Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилспиртовые волокна вытягивание

    Тем не менее целесообразно несколько подробнее остановиться на одном вопросе, имеющем особое значение, а именно на изменении свойств полимерных материалов и в первую очередь волокон, формуемых из растворов, при их ориентационной вытяжке. В производстве волокон из синтетических кристаллизующихся полимеров процессы ориентационного вытягивания волокна с целью его упрочнения выносятся за пределы машин для формования волокна. Это относится не только к тем волокнам, которые формуются из расплава, но и к волокнам, получаемым путем формования из растворов (например, поливинилспиртовые волокна). Кратность последующего вытягивания с целью ориентации полимера и перестройки структуры волокна может достигать 5—10. В ходе этого процесса происходит и установление окончательного диаметра (номера) нити. [c.282]


    Вытягивание волокна производится прп повышенной температуре (160—180 С) по обычной схеме для карбоцепных волокон. Штапельное поливинилспиртовое волокно вытягивают на [c.241]

    Прочность поливинилспиртового волокна составляет 20— 30 рпм. Она может быть увеличена до 40—45 рпм в результате вытягивания. Прочность волокна из стереорегулярного полимера может достигать 60—65 ркм и даже 90—100 ркм. [c.177]

    Степень ориентации макромолекул поливинилспиртового волокна, так же как и других волокон, может быть увеличена путем вытягивания его при нормальной и особенно при повышенной температуре. Возможность повышения кристалличности волокна определяется в основном структурой макромолекул. Чем меньше число разветвлений в макромолекуле, чем выше регулярность химического строения (меньше ацетильных групп, оставшихся после омыления) и чем больше содержание стереорегулярных фракций, тем выше при одной и той же степени вытягивания кристалличность волокна и соответственно ниже его растворимость. Увеличение кристалличности волокна достигается повышением степени его вытягивания, особенно при наличии последующего процесса терморелаксации. Изменение степени кристалличности поливинилспиртового волокна на отдельных стадиях технологического процесса производства характеризуется следующими данными  [c.241]

    Степень ориентации макромолекул поливинилспиртового волокна, так же как и других волокон, может быть увеличена вытягиванием при нормальной и особенно при повышенной температуре. [c.256]

    Кристалличность волокна возрастает с повышением степени его вытягивания, особенно при наличии последующего процесса терморелаксации. Изменение степени кристалличности поливинилспиртового волокна на отдельных стадиях производства характеризуется следующими данными [6]  [c.256]

    Дополнительное вытягивание волокна производится при 220— 240 °С (так называемое термическое вытягивание) по обычной для карбоцепных волокон схеме. Штапельное поливинилспиртовое волокно дополнительно вытягивают на 30—100%, высокопрочное — на 350—500%. В результате значительно снижается набухание и усадка волокна в воде. [c.256]

    Прочность волокна винол зависит от условий получения и на значения этого волокна. У штапельного волокна, используемого в смеси с другими волокнами или в чистом виде для изготовления изделий народного потребления, прочность в сухом состоянии составляет 30—40 гс/текс (300—400 мН/текс). Прочность волокон, предназначенных для изготовления технических изделий, повышают до 40—60 гс/текс (400—600 мН/текс) увеличением степени вытягивания. У высокопрочного волокна прочность достигает 60— 65 гс/текс, а при необходимости может быть доведена до 80 гс/текс. В опытном масштабе получены поливинилспиртовые волокна с прочностью 90—100 гс/текс. [c.263]


    Советскими исследователями была показана возможность [26] получения нерастворимого в горячей воде высокопрочного поливинилспиртового волокна (80—110 гс/текс, удлинение 8—10%), сформованного из обычного поливинилового спирта. Это достигнуто так называемым термопластичным вытягиванием волокна в узком интервале повышенных температур, близких к температуре кристаллизации поливинилспиртового волокна. Дополнительному вытягиванию на 150—275% подвергалось обычное поливинилспиртовое волокно с прочностью 45 гс/текс [27]. [c.263]

    Волокна, получаемые мокрым методом формования, непосредственно после формования, а чаще после пластификационного вытягивания или прививки подвергаются процессу сушки. Сушка волокон соответствует диаграммам сушки тел, содержащих поверхностную и внутреннюю влагу. Волокна после отжима обычно содержат 50—150% связанной воды и 30—100% воды, находящейся на поверхности. Кинетика сушки волокон изучена достаточно подробно, особенно на примере гидратцеллюлозных волокон. Меньше изучена сушка полиакрилонитрильных, поливинилспиртовых и поливинилхлоридных волокон [43 —48]. [c.276]

    Летив — лабораторно-опытное водонерастворимое поливинилспиртовое волокно, получаемое методом высокотемпературного вытягивания. Прочность 105—145 кгс/мм (80—110 гс/текс). удл. 8—10%. Разработано ЛИТЛП [28]. [c.66]

    Поливинилспиртовые волокна получают мокрым или реже сухим способом. Последний, по-видимому, более подходит для производства водорастворимых нитей малой толщины и волокон с особыми свойствами. В этом случае прядильный раствор содержит 40—45% полимера и 55—60% воды. Формование нитей производят так же, как и формование полиамидных нитей из расплава. Свежесформованные нити в пластичном состоянии подвергаются дополнительному вытягиванию для повышения прочности. [c.218]

    Поливинилспиртовые волокна. Эти волокна также вытягивают в пластифицированном состоянии, т. е. вытяжке подвергают свежесформованные волокна, содержащие большое количество воды температура вытягивания 100° С. В этих условиях водородные связи между группами ОН соседних макромолекул настолько ослаблены, что прочность получаемых волокон не превышает 60 гс/текс. При 205—215° С, а при определенных условиях и при температуре 216—225° С поливиниловый спирт переходит в вязкоэластическое состояние, поэтому, вытягивая волокна при 205— 210° С, удается значительно повысить их прочность (до 100 гс/текс). В связи с этим предложены следующие способы упрочнения поливинилспиртовых волокон  [c.302]

    Последний способ позволяет достичь максимальной степени вытяжки и получить волокно максимальной прочности (до 100 гс/текс). Одновременно с увеличением кратности вытяжки и прочности волокна уменьшается сорбция паров воды и набухание в воде. Поливинилспиртовые волокна после термопластифика- ционного вытягивания не нуждаются в ацеталировании и не растворяются даже в кипящей воде. [c.302]

    Принципиально поливинилспиртовое волокно можно получить формованием из раствора поливинилацетата (в частности, из концентрированного раствора, получаемого при проведении процесса полимеризации винилацетата в растворе), а омыление осуществить на волокне, подвергнув его обработке щелочью при одновременном значительном вытягивании, аналогично тому, как это имеет место при получении гндратцеллюлозного волокна форти-зан. При работе по такой схеме можно ожидать получения высокопрочного и высокомолекулярного поливинилспиртового волокна, обладающего качественно иными свойствами по сравнению с обычным волокном винол. Проведение исследований в этом направлении может привести к новым интересным и практически важным результатам. [c.234]

    Изучение условий формования волокна этим способом было проведено советскими исследователями [9]. Для формования использовались препараты поливинилового спирта со степенью полимеризации 1300—1700, пластифицированные водой или спиртом (100—150% от массы полимера). При добавлении такого количества воды температура течения поливинилового спирта резко снижается (с 220—230 до 80—95 °С). Пластифицированный полимер перед формованием гранулируют. Температура в шахте изменяется в зависимости от характера применяемого пластифицирующего реагента в пределах 130—200 °С. Свежесформованное волокно, содержащее 10—30% воды, подсушивается и затем подвергается вытягиванию при повышенной температуре, так же как и обычное поливинилспиртовое волокно, полученное из растворов. [c.253]

    Эти данные показывают, что частичная замена групп ОН в макромолекуле целлюлозы мало влияет на уменьшение прочности волокна в мокром состоянии. Например, прочность диацетатного волокна, в котором 65—70% от общего числа групп ОН заменено на более гидрофобные ацетильные, в мокром состоянии снижается почти так же, как и у вискозного волокна. Это объясняется тем, что частично омыленный ацетат целлюлозы, используемый для получения волокна (см. разд. 18.3), имеет нерегулярную структуру, а такая структура вызывает дополнительное снижение интенсивности межмолекулярного взаимодействия. Значительное уменьшение прочности в мокром состоянии в результате сильного вытягивания волокна и его последующего прогрева наблюдается у поливинилспиртового волокна. Однако в ряде случаев усиление межмолекулярного взаимодействия недостаточно для значительного уменьшения потери прочности мокрого волокна и для достижения требуемого эффекта необходимо образование более прочных химических связей между макромолекулами ( сшивок ). [c.109]


    Выше приведены результаты исследования, в котором была сделана попытка с помощью изометрического метода оценить изменение структуры и свойств поливинилхлоридного волокна, подвергнутого ориентационному вытягиванию и термофиксации (см. стр. 244). В последующей работе изометрический метод был использован для исследования поливинилспиртовых волокон, подвергнутых термопластификационному вытягиванию и обработке альдегидами. Характеристика исследуемых образцов приведена в табл. 1. [c.236]

    Тепловая обработка (особенно термообработка под натяжением) значительно повышает водостойкость поливинилспиртовых и теплостойкость ацетатных, поливинилхлоридных и других термопластичных волокон. Меняя условия вытягивания и термообработки, удается понизить склонность полиэфирных волокон к образованию пилинга. Таким образом, варьируя параметры этих процессов, удается изменять свойства химических волокон в столь же широких пределах, как и при изменении условий их формования. При этом можно изменять модуль деформации, степень усадки в кипящей воде, водо- и теплостойкость, а в некоторых случаях удается придавать волокнам антипилинговые свойства, жесткость или мягкость (податливость). [c.357]

    Существенное влияние на процессы упрочнения волокон и их физико-механические свойства оказывает продолжительность хранения свежесформованных волокон до процесса вытягивания, что особенно заметно при получении высокопрочных видов волокон на основе кристаллизующихся полимеров. Чем дольше хранится волокно, тем больше затем затруднений в процессе вытягивания и ниже уровень достигаемых свойств. Протекание процессов старения при хранении обнаружено для полипропиленовых, поливинилспиртовых, полиоксиметиленовых, поликапроамидных, полиэтилен- -терефталатных и других волокон [23 40 47 66 67]. Оно, очевидно, связано с заметными скоростями протекания кристаллизационных и релаксационных процессов при хранении или других процессов вторичного структурообразования. [c.254]


Смотреть страницы где упоминается термин Поливинилспиртовые волокна вытягивание: [c.234]    [c.251]    [c.239]    [c.302]    [c.250]    [c.251]    [c.179]    [c.315]   
Основы химиии и технологии химических волокон Часть 2 (1965) -- [ c.241 ]

Основы химии и технологии производства химических волокон Том 2 (1964) -- [ c.241 ]




ПОИСК







© 2025 chem21.info Реклама на сайте