Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа измерений термохимический

    Термохимический метод. Различают термокаталитический и термосорбционный методы анализа. Соответственно на их основе разработаны термокаталитические и термосорбционные анализаторы. Термохимический метод основан на измерении теплового [c.75]

    Методы анализа газов разнообразны и основаны на химических или физических свойствах газов. Так, например, термохимический метод газового анализа основан на измерении теплового эффекта химической реакции, вискозиметрический — на измерении вязкости газов, денсиметрический — на измерении плотности газов, и т. п. Для количественного анализа газовых смесей наиболее часто применяют газообъемный (волюмометрический) метод, основанный на измерении сокращения объема пробы газа при поглощении отдельных составных частей жидкими или твердыми поглотителями. [c.84]


    Существующие в настоящее время типы автоматических газоанализаторов по принципу их действия могут быть разделены на две большие группы первая — приборы, основанные на физических методах анализа, выполняемых при помощи вспомогательных химических реакций, и вторая — основанные на чисто физическом принципе. К первой группе относятся автоматические газоанализаторы, построенные либо на измерении сокращения объема анализируемого компонента, вызываемого химической реакцией (волюмометрические методы), либо на измерении теплового эффекта химических реакций (термохимические методы), либо на создании цветовых изменений или мути посредством химических реакций. Во второй группе находятся газоанализаторы, действующие а) по методам денсиметрии (измерение плотности), [c.319]

    Принципы современной калориметрии. В немногих случаях, например для газообразных НС1, HjO и Oj, можно определить теплоту образования соединения, измеряя тепло, выделяющееся при непосредственном их синтезе из элементов. Однако в большинстве случаев необходимо измерять теплоту тех реакций, для которых известны теплоты образования всех исходных веществ и продуктов реакции, за исключением интересующего нас вещества. Теплоты образования большинства органических соединений получены измерением теплоты, выделяющейся при сжигании в кислороде под давлением в бомбе при постоянном объеме. В случае НС1, как упомянуто выше, возможно измерить теплоту образования из Hj и lj при постоянном давлении около 1 атм", поэтому, если не считать второстепенных поправок, то наблюдаемый тепловой эффект представляет собой непосредственно величину АН образования. С другой стороны, результаты, получаемые при сжигании в бомбе постоянного объема под повышенным давлением, дают изменение внутренней энергии, соответствующее этому давлению эти данные должны быть подвергнуты обработке с помощью весьма тонких методов расчета для получения величины ДН при 1 атм и комнатной температуре [1]. Кроме того, вычисление теплот образования из теплот сгорания требует знания теплот образования HjO, Oj и других соединений, образующихся в бомбе следовательно, если эти термохимические постоянные не будут определены с высокой степенью точности, то и точность вычисляемой теплоты образования будет недостаточной. Надежность определения каждой термохимической величины в значительной мере зависит от методов анализа, применявшихся для определения качественного и количественного состава образовавшихся продуктов. [c.43]


    Анализ результатов термохимических измерений и измерешш методом фотоионизации (см. 51) [1, 4, 6, 163] [c.28]

    Метод основан на измерении теплового эффекта экзотермической реакции с участием определяемого компонента газовой смеси. Метод пррп оден только для определения горючих веществ (Нг, Нг8, СО, 802, СН4 и других углеводородов). В аналитической практике используется беспламенное горение на мелкодисперсном катализаторе с развитой поверхностью. Сзтцествуют два варианта термохимического метода анализа газов. В первом определяемый компонент сгорает непосредственно на чувствительном элементе, в качестве которого, как правило, применяют терморезистор, служащий одновременно катализатором или покрытый слоем катализатора. Повышение температуры АГ терморезистора является при этом функцией содержания определяемого компонента. Во втором варианте проба газа пропускается через камеру, где на насыпанном слое катализатора протекает реакция, в результате которой повышается температура катализатора, являющаяся и в этом случае функцией содержания определяемого компонента. Повышение температуры катализатора измеряют термопарой, сравнительный спай которой помещают в потоке газа до камеры, а измерительный спай — в камеру непосредственно в катализаторе. [c.920]

    Здесь же отметим, что исследования ионно-молекулярных реакций нашли также применение для измерения термохимических величин, например, для измерения сродства молекул к протону [341], к электрону [763], а также в аналитической масс-спектроскопии в методе так называемой химической ионизации [758, 769, 770]. В этом методе регистрируется масс-спектр, получаемый нри реакции ионов (например, СН5, образуемых при ионно-молекулярных реакциях в СН4) с анализируемыми молекулами. Получаемый масс-спектр оказывается малолинейчатым по сравнению с масс-спектром электронного удара, что сильно упрощает анализ и расширяет аналитические возможности масс-спектрометрии. [c.379]

    Первая в отечественной и мировой литературе монография, в которой описаны все известные в настоящее время варианты фотоиониза-ционной спектроскопии молекул. Систематически излож1ены физические и экспериментальные основы этого метода изучения электронной структуры молекул. Рассмотрены возможности и ограничения метода при решении исследовательских (измерение термохимических параметров молекул, радикалов и ионов, изучение строения и реакционной способности ионов в газовой фазе, определение электронной структуры молекул и ионов) и аналитических (установление состава и строения молекул, анализ смесей и др.) задач. [c.12]

    Термохимические исследования, а также измерения, выполняемые с помощью рентгеновских лучей, не только позволяют получить значения мен атом-ных расстояний и энергий диссоциаций, но часто оказываются достаточно точными для изучения изменений этих величин в зависимости от природы остальных частей молекулы. Так, расстояния углерод — углерод в различных молекулах изменяются, как это видно из табл. 11 [9], в широких пределах. Соответствующие данные были нолучены путем анализа методом Фурье рентгеновских лучей, отраженных от кристаллов различных веществ. В тех случаях, когда возможно сравнение, приведенные данные оказываются в соответствии с данными, полученными из полосатых спектров простых молекул. Обсуждение квантовомеханической интерпретации полученных результатов слишком отвлечет нас от основной темы настоящей главы. [c.486]

    Опыт показывает, что тремя описанными типами распределения отнюдь не исчерпывается их многообразие. В работах Беринга и Серпин-ского и в термохимических работах Киселева содержится интересный материал по адсорбции паров жидкостей и, в первую очередь, метанола при малых заполнениях на ряде адсорбентов. Наличие сильных можмо-лекулярных взаимодействий не дает возможности распространить анализ на средние части изотерм, но уже самые их начальные части, которые невозможно исследовать, применяя более грубую методику, указывают на наличие неоднородности, причем форма этих участков для сернокислого бария и силикагелей сложнее, чем в упомянутых ранее случаях. Для сульфата бария Елович смог показать, что начальная часть изотермы соответствует распределению, характерному для почти однородной поверхности с очень небольшим узким выступом в сторону более высоких значений теплот адсорбции. Результаты обработки изотерм по нашим методам в этом случае совпадают с результатами прямых калориметрических измерений Киселева. Вероятно, не случайно оказался однородным наиболее растворимый из адсорбентов, для которого, в процессе образования, естественно ожидать сглаживания поверхности повторным растворением с наиболее активных мест, обладающих повышенной растворимостью, и выделением на малоактивных местах с пониженной растворимостью. Мелко раздробленная, растертая поваренная соль, для которой такое сглаживание не могло иметь места, по данным Еловича и Чер-нецова, снятым по дифференциальному методу Беринга и Серпинского, [c.118]



Смотреть страницы где упоминается термин Метод анализа измерений термохимический: [c.551]    [c.551]    [c.312]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.45 , c.75 , c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Термохимические

Термохимические измерения

Термохимический анализ



© 2024 chem21.info Реклама на сайте