Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы метод порошковой металлурги

    Карбид вольфрама С обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85— 95% УС и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат, кроме карбида вольфрама, карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов. ...........  [c.661]


    Кроме компактных тугоплавких металлов методами порошковой металлургии получают ряд других материалов. Важнейшими из них являются карбидные твердые сплавы, ферриты, пористые материалы, керметы. [c.659]

    В производстве тугоплавких металлов (вольфрам, титан и другие) применяется метод порошковой металлургии, заключающийся в восстановлении металла из окислов в форме порошка. Тугоплавкие сплавы производятся прессованием металлических порошков с последующим спеканием в электрических печах. Температура спекания порошка обычно составляет 2/3 от температуры плавления металла. Температура плавления смесей порошков также бывает ниже плавления чистых металлов. Таким образом, применяя порошковую металлургию, удается понизить температуру, требуемую для получения тугоплавких сплавов, что и является крупным преимуществом порошкового метода. [c.420]

    Процессы образования сплавов различного типа наблюдаются и при вакуумном напылении на подложку двух или нескольких металлов одновременно (нанесение припоев для пайки ответственных деталей). За счет развития диффузионных процессов получают сплавы методами порошковой металлургии. [c.279]

    Металлические карбиды входят в состав чугунов и сталей, придавая им твердость, износоустойчивость и другие ценные качества. На основе карбидов вольфрама, титана и тантала производят сверхтвердые и тугоплавкие сплавы, применяемые для скоростной обработки металлов. Такие сплавы изготовляют методами порошковой металлургии (спрессовыванием составных частей при нагревании) в качестве цементирующего материала чаще всего используют кобальт и никель. Сплав, состоящий из 20% Hf и 80% ТаС, является самым тугоплавким известным веществом (т. пл. 4000°С). [c.453]

    Карбид вольфрама W обладает очень высокой твердостью (близкой к твердости алмаза), износоустойчивостью и тугоплавкостью. На основе этого вещества созданы самые производительные инструментальные твердые сплавы. В их состав входит 85—95% W и 5—15% кобальта, придающего сплаву необходимую прочность. Некоторые сорта таких сплавов содержат кроме карбида вольфрама карбиды титана, тантала и ниобия. Все эти сплавы получают методами порошковой металлургии и применяют главным образом для изготовления рабочих частей режущих и буровых инструментов насадки резцов, сверл, фрез для обработки высокоуглеродистых и нержавеющих сталей. Однако при высоких температурах карбид состава W разлагается с образованием другого, но менее твердого карбида вольфрама  [c.517]

    Можно полагать, что изготовление отдельных кислотостойких изделий и полуфабрикатов (деталей центробежных насосов, запорной арматуры, фильтров, листов, труб и т. п.), столь необходимых химической промышленности, из кислотостойких композиций сплавов методом порошковой металлургии —важная и технически разрешимая проблема. [c.335]


    При изготовлении тугоплавких металлических сплавов методами порошковой металлургии твердофазные реакции также играют существенную роль. Непосредственное получение сплавов, легированных тугоплавкими металлами (Мо, W, Та, Ti), сопряжено с большими трудностями. Поэтому оказалось целесообразным проведение соответствующих твердофазных реакций. В последнее время приобрели большое значение некоторые высокопрочные материалы, которые состоят из карбидов и окислов в соединении со связующими металлами. К этой группе принадлежат металлокерамические материалы, которые сочетают температурную и коррозионную стойкость керамических материалов и важные при обработке давлением пластические свойства металлов.  [c.433]

    Маленькие текстурованные куски таких сплавов имеют петли гистерезиса, очень близкие к прямоугольным из-за отсутствия деформационных эффектов. Для промышленных магнитов следует изучить, как создать надлежащую текстуру в больших объемах или в конце концов обработать сплавы методами порошковой металлургии, отказавшись тем самым от первоначально задуманной выгоды получения литых магнитов. Похоже также на то, что большая хрупкость сплавов будет препятствовать использованию литья в производстве. [c.196]

    Эта сложность требований, предъявляемых к современным материалам, вообще делает невозможной использование традиционных металлических сплавов, совершенствование которых неспособно обеспечить принципиальное и резкое повышение эксплуатационных характеристик при высоких и низких температурах, в условиях сильных ударных, знакопеременных нагрузок, тепловых ударов, действия облучения, высоких скоростей. Отсюда основным направлением современного материаловедения является создание композиционных, сложных материалов, компоненты которых вносят в них те или иные требуемые свойства. Типичным примером являются композиционные жаропрочные сплавы, состоящие из достаточно пластичной основы (матрицы), упрочненной непластичными тугоплавкими составляющими в форме волокон, нитевидных кристаллов, тонких включений либо поверхностно упрочненной покрытиями. Практическое создание таких сложных материалов обычно невозможно традиционными методами сплавления с последую-, щим литьем и механической обработкой, так как входящие в их состав компоненты плохо совместимы, имеют не только разные температуры плавления, но и вообще различную природу. Это вызывает необходимость использования методов порошковой металлургии, заключающейся в смешении разнородных и разнотипных материалов в форме порошков, прессовании из смесей заготовок нужных форм и спекания этих заготовок для их упрочнения и формирования требуемой структуры. [c.77]

    Массовое содержание хрома, молибдена и вольфрама в земной коре оценивается в 2-10 , 1-10 и 7-10 % соответственно. Хром встречается в природе главным образом в виде хромистого железняка РеО-СггОз, при восстановлении которого углем получают сплав железа с хромом — феррохром, используемый в металлургии при производстве хромистых сталей. Чистый хром получают методом алюмотермии. Наиболее распространенным соединением молибдена является минерал молибденовый блеск МоЗг, из которого получают металл в виде порошка. Компактный молибден (и компактный вольфрам) получают методом порошковой металлургии прессование порошка в заготовку и спекание заготовки. [c.321]

    Сверхтвердые сплавы ( победит и т. п.) содержат обычно 80—87% W, 6—15% Со и 5—7% С. Изготовляются они методом порошковой металлургии. Сущность этого метода заключается в накаливании до спекания спрессованной смеси порошкообразных исходных веществ (иногда с ее последующей механической обработкой в горячем состоянии). Так как спекание осуществляется при гораздо более низких температурах, чем плавление данного вещества, метод порошковой металлургии часто используется и для изготовления (обычно —под давлением) различных металлических изделий. [c.371]

    В настоящее время некоторые сплавы готовят методом порошковой металлургии. Берется смесь металлов в виде порошков, прессуется под большим давлением и спекается при высокой температуре в восстановительной среде. Таким путем получают сверхтвердые сплавы. [c.155]

    В настоящее время некоторые сплавы готовят методом порошковой металлургии. Берется смесь металлов в виде порошков, прессуется под большим давлением н спекается [c.227]

    Методами порошковой металлургии были приготовлены сплавы на основе циркония, содержащие 5п, Ве, lM.g и и. [c.313]

    Твердые сплавы состоят из карбидов тугоплавких металлов и металла-связки (кобальт, никель). В СССР трех групп вольфрамо-кобальтовые ВК) титано-вольфрамо-кобальтовые (ТК) итантало-титано-вольфрамо-кобаль-товые (ТТК). Получают твердые сплавы методом порошковой металлургии. [c.145]

    СПЕЧЕННЫЕ материалы, металлокерамические мате-р и а л ы— материалы, изготовляемые из порошков металлов и сплавов методами порошковой металлургии (спеканием). Впервые изделия из платины прессованием порошков и спеканием (см. Спекаемость) были получены 1) начале 19 в. Методами порошко-во1"1 металлургии получают конструкционные материалы, фрикционные материалы и антифрикционные материалы, фильтровые материалы и электротехнические материалы, твердые сплавы и инструментальные материалы. Одним из наиболее распространенных видов С. м. являются конструкционные С. м., обычно изготовляемые из порошков углеродистых и легирован, сталей, чугуна, цветных металлов и сплавов (см. вклейку между сс. 448—449). Осн. особенность таких материалов — их высокие плотиость и прочность, приближающиеся к плотности и прочности обычных изделий, изготовляемых из проката или литья. Методами порошковой металлургии получают материалы ц изделия конструкционного назначения со спец. физическими и технологическими св-вами высокой износостойкостью, жаропрочностью, твердостью, большой плотностью, нормированным линейным и объемным расширением. Фрикционные С. м. иа железной основе (нанр., марки МФ) предназначены для эксплуатации в условиях сухого трения при давлении до 20 кгс/сл и скоростях скольжения до 20 м/сек в паре с чугу- [c.427]


    Получение порошкообразных сплавов. Методом порошковой металлургии изготовляют порошки не только чистых металлов, но и их сплавов. В этом отношении особый интерес представляет электролитическое получение порошкообразных сплавов, содержащих металлы, которые из водных растворов выделены быть не могут. К таким металлам в первую очередь 0Т1ЮСЯТСЯ молибден и вольфрам. Как было описано в предыдущем параграфе, сплавы этих металлов с железом, кобальтом, никелем и марганцем сравнительно легко получаются электролитическим путем. В монографии [171] приведены условия электролитического получения порошкообразных сплавов, содержащих молибден или вольфрам и пригодных для порошковой металлургии. Некоторые из этих сплавов обладают высокой магнипюй восприимчивостью, т. е. являются пермаллоями. [c.77]

    Для упрочнения серебра используют оксиды кадмия, алюминия, меди, никеля, олова, индия, свинца, цинка, сурьмы, титана и др. Дисперсно-упрочненные композиты на основе серебра получают методами порошковой металлургии и избирательным внутренним окислением сплавов А . Взаи юдействие компонентов ДКМ отсутствует вплоть до температуры диссоциации оксида. Оксидами кадмия упрочняют также псевдосплавы серебро-никель. Известны электроконтактные материалы с высокими износо- и жаростойкостью на основе серебра, упрочненные совместно оксидами кадмия, олова, индия, цинка. По,лучают их путем внутреннего окисления сложнолегированных сплавов серебра. Другой способ получения несколько различных сплавов серебра размалывают, механически смешивают, прессуют, спекают и избирательно окисляют. [c.122]

    Одшш из путей интенсификации гидравлических резаков является повышение абразивной устойчивости сопел. С этой целью при их изготовлении могут быть использованы твердосплавные (на основе методов порошковой металлургии) смеси типа ВК8В и минерало-керамика "Синоксаль-49" [ЗО], представляющая собой обработанный особым образом технический глинозем с добавками минерализаторов и пластификатора. Сопла из твердых сплавов и минералокерамики стабильно работают в условиях жесткого гидроабразивного изнашивания при участии кавитации в 6-8 раз дольше, чем сопла из легированных сталей. [c.194]

    Метод порошковой металлургии широко используется для получения боль шинства компактных тугоплавких металлов и ряда Других тугоплавких мате риалов, к числу которых относятся карбидные твердые сплавы, керметы и пр Керметы (керамико-металлические материалы) получают спеканием смесей по рошков металлов и неметаллических компонентов — тугоплавких боридов, кар бидов, оксидов и др. Из порошков металлов чаще всего используются Сг и Fe, а также их аналоги. Керметы сочетают в себе тугоплавкость, твердость и жаростойкость керамики с проводимостью, пластичностью и прочими свойствами металлов. [c.288]

    В зависимости от предъявляемых требований (высокая твердость, жаропрочность, жаростойкость, высокая или низкая теплопроводность и т. д.) и условий эксплуатации методами порошковой металлургии изготовляют и другие виды керметов. Например, из смеси алмазного порошка и порошка инструментальных и быстрорежущих сталей спеканием при температуре около 1300°С под давлением 1 кбар получают алмазнометаллический сплав, который используют для изготовления режущего и шлифовального инструмента.  [c.217]

    Кроме того, в руководстве даны краткие сведения о строении и свойствах lyiyna, некоторых твердых сплавах и изделиях, изготовляемых методами порошковой металлургии, а также о ряде цветных металлов и их сплавах. [c.4]

    N1 и 11% 81, 10/о N1, 0,57о Ре, 0,8% и 0,1% Т1. Сплав Х8001 (США), содержащий 1% N1 и 0,5% Ре, корродирует в воде со скоростью 0,01 г/м -ч при 300°С. По данным норвежских ученых, при 260—300°С сплав с 11% 81, % N1, 0,5% Ре, 0,8% Mg и 0,1 /о ведет себя лучше, чем сплав Х8001. Существенным недостатком таких сплавов являются их низкие механические свойства при высоких температурах. Этот недостаток можно устранить, если изготавливать изделия методом порошковой металлургии. [c.126]

    Получение. Схема металлургич. передела железных руд включает дробление, измельчение, обогащение маги, сепарацией (до содержания Ре 64-68%), получение концентрата (74-83% Ре), плавку осн. массу Ж. выплавляют в виде чугуна и стали (см. Железа сплавы). Технически чистое Ж., или армко-Ж. (0,02% С, 0,035% Мп, 0,14% Сг, 0,02% 8, 0,015% Р), выплавляют из чугуна в сталеплавильных печах или кислородных конвертерах. Чистое Ж. получают восстановлением оксидов Ж. твердым (коксик, кам.-уг. пыль), газообразным (Н2, СО, их смесь, прнр. конвертированный газ) илн комбинир. восстановителем электролизом водных р-ров илн расплавов солей Ж. разложением пентакарбонила Ре(СО)5 (карбонильное Ж.). Сварочное, илн кричное, Ж. производят окислением примесей малоуглеродистой стали железистым шлаком прн 1350°С илн восстановлением из руд твердым углеродом. Восстановлением оксидов Ж. прн 750-1200°С получают губчатое Ж. (97-99% Ре)-пористый агломерат частиц Ж. пирофорно в горячем состоянии поддается обработке давлением. Карбонильное Ж. (до 0,00016% С) получают разложением Ре(СО)5 при 300 °С в среде КНз с послед, восстановит, отжигом в среде Н2 прн 500-600 С, порошок с размером частиц 1-15 мкм перерабатывается методами порошковой металлургии. Особо чистое Ж. получают зонной плавкой и др. методами. [c.141]

    С, изготовляют на основе переходных металлов IV-VI гр., а также тугоплавких карбидов, нитридов, силицидов, боридов разл. металлов. Легкоплавкие С. на основе Sn, РЬ, d, Bi (напр., сплав Вуда), Та, Hg, Zn имеют т-ры плавления ниже отдельных компонентов и используются в качестве предохранит, вставок, пробок легкоплавких припоев. Пористые С. создают в осн. методами порошковой металлургии. С. со сквозными порами используют в качестве фильтров, самосмазывающихся подшипников, пламегасителей с изолир. порами (пеноматериалы) - в качестве теплозащиты. В атомной технике используют С. с особыми ядерными св-вами высоким или низким сечением захвата (вероятностью поглощения) нейтронов, у-лучей способностью замедлять и отражать нейтроны способностью передавать тепло, выделившееся в результате ядерных р-ций (напр., С. для твэлов). Для нх изготовления используют актиноиды Li, Ве, В, С, Zr, Ag, d, In, Gd, Er, Sm, Hf, W, Pb и др. элементы. [c.409]

    Получают Ц.к. взаимод. Zr или его оксидов с углеродом, покрытия - хим. осаждением из газовой фазы (восстановлением галогенидов 7х смесью Н2 и углеводородов). Компактные изделия из ТхС м. 6. получены методами порошковой металлургии. Ц. к.- компонент эвтектич., жаропрочных сплавов, керамики, покрытий на металлах. Ю. В. Левинский. [c.387]

    Керметы — керамико-металлические материалы — это гетеро-фазные композиции, получаемые методом порошковой металлургии и обладающие комплексом улучшенных свойств. Они отличаются от дисперсноупрочненных сплавов тем, что основной фазой в них является керамическая. Первым керметом конструкционного назначения была композиция оксид алюминия — хром, которую удалось улучшить введением различных добавок. Более перспективным оказался кермет оксид алюминия — тугоплавкий металл (молибден, вольфрам, тантал). Широкое применение в атомной технике нашли керметы на основе оксидов урана и тория иОг—Мо( У) ТЬОг—Мо (Ш), а также на основе оксида циркония [c.155]

    Используя те или иные сочетания металла п керамики,. можно в широких пределах варьировать свойства керметов, придавая им твердость илп, наоборот, пластичность, нужную электропроводность, огнеупорность. Кер-меты часто применяют для изготовления конструкций, работающих в особо тях<елых условиях (детали реактивных двигателей, ядерных реакторов, тормозных колодок). Металлокерамические твердые сплавы используются для изготовления металлорежущего инструмента. Такие сплавы получают методом порошковой металлургии из наиболее твердых карбидов переходных металлов, зерна которых сцементированы более мягким металлом-связкоп. В качестве карбида чаще всего выбирают карбид вольфрама, а также твердые растворы карбидов титана, вольфрама и тантала, а в качестве связки — кобальт или никель. [c.169]

    Помимо наиболее распространенных способов получения ПТА (гальванического нанесения слоя платины и наварки платиновой фольги на поверхность титанового анода), предложены другие разнообразные методы. ПТА можно подучать нанесением на титан платины диффузионной сваркой в вакууме, напылением расплавленного металла, конденсацией паров платины на титане, помещенном в вакуумной камере [1631, холодной прокаткой титана с листовой платиной с последующей термообработкой в инертной атмосфере или вакууме при 600—1000 °С [164J, покрытием титана платиной или металлами - платиновой группы методом взрыва [165[, методами порошковой металлургии, при получении металлокерамических электродов, в состав которых входят металлы платииовой группы [166), или нанесением их на поверхность в виде тонкого слоя [167]. Применяют нанесение солей платиновых металлов на титан в виде растворов их солей или пасты с последующим термическим разложением их [16Я] и образованием активного слоя, содержащего платиновые металлы, их окислы или смешанные окислы платиновых металлов с окислами неблагородных металлов. Окисные слои платиповых. металлов могут быть получены па поверхности электрода нанесениел гальваническим или каким-либо другим способом тонкого слоя платинового металла или его сплава с последующим его окислением. [c.175]

    В последнее время предложены электроды из окислов железа с добавками других окислов, например Т102, ZтO , 8вО [19] и варианты составных электродов с активным слоем из магнетита, нанесенным на основу из титана, его сплавов или других пленкообразующих металлов [20]. Слой окислов железа можно наносить на металлическую основу в расплавленном состоянии [21] или в виде порошка магнетита со связующим материалом с последующей термообработкой [22]. Такие электроды можно получать прессованием порошка и затем спеканием его, т. е. методами порошковой металлургии [23]. Активный слой из окислов железа на титановой основе электрода можно получить так ке в процессе окисления нанесенного слоя металлического железа в условиях, способствуюпщ образованию магнетита. [c.224]

    Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то цросто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы или весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии. [c.185]


Смотреть страницы где упоминается термин Сплавы метод порошковой металлурги: [c.214]    [c.508]    [c.213]    [c.432]    [c.107]    [c.350]    [c.380]    [c.184]    [c.175]    [c.107]    [c.350]   
Руководство по неорганическому синтезу (1965) -- [ c.52 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Металлургия

Металлургия порошковая

Метод порошковой металлургии



© 2025 chem21.info Реклама на сайте