Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чугун состав

    Современная доменная печь объемом 2700 м в сутки выплавляет 4500 т чугуна. Рассчитать суточный расход и состав компонентов шихты, если на 1 т чугуна железной руды расходуется 2120 кг, кокса 850 и флюса 450 кг. [c.222]

    Отливки из высокопрочного чугуна с шаровидным графитом (ГОСТ 7293—70) лолучают обработкой расплавленного чугуна магнием или другими специальными присадками. Химический состав чугуна в отливках не является браковочным признаком, за исключением случаев, оговоренных в ТУ. Марки и механические свойства высокопрочного чугуна приведены в табл. 4.7. [c.211]


    Марка чугуна Состав п % масс. Предел прочности в М /а1 Стрела прогиба в мм Твердость НВ в Мн/л  [c.243]

    При производстве чугуна состав газовой фазы в доменной печи таков, что восстановление оксидов железа теоретически возможно при любой температуре (см. заштрихованную область на рис. 5.8). [c.138]

    ЧУГУН — СОСТАВ, СВОЙСТВА И ТЕРМИЧЕСКАЯ ОБРАБОТКА 1. Химический состав и механические свойства чугунов [c.190]

    Д о м е п и ы й, или колошниковый, га з получается в большом количестве как побочный продукт в процессе доменной плавки чугуна. Выход доменного газа составляет в среднем 3,9 на 1 кг выплавленного чугуна. Состав и свойства доменного газа зависят от ряда факторов, и в первую очередь от рода топлива, применяемого при выплавке чугуна. Средний состав доменного газа, выдаваемого печью, работающей на коксе, характеризуется следующими данными СО = 25—31% Н2,= 2—3% СН4 = 0,3—0,5% N2 = = 57-58% С0г=9—14%. [c.110]

    Сопротивление удару с понижением температуры от нормальной (10—25° С) до —80° С уменьшается сравнительно мало. Для чугунов, состав которых приведен в табл. 110, это понижение колеблется в пределах от 12 до 18% [36]. [c.289]

    Марка чугуна Состав в % масс. Предел прочности в Ми/ Стрела прогиба в мм Твердость НВ в Л1Я/Л  [c.243]

    Никелевые чугуны обладают коррозионной стойкостью в рас плавах солей и в концентрированных растворах едких щелочей С увеличением содержания никеля стойкость чугунов увеличи вается, но содержание кремния при этом должно быть снижено Такие чугуны пригодны для расплавленных щелочей, В Совет ском Союзе для изготовления аппаратуры, устойчивой против действия водпых растворов щелочей, выпускаются на базе природнолегированных халилонских руд две марки щелочестойких чугунов СЧЩ-1 и СЧЩ-2, состав и свойства которых приведены в табл, 22, [c.244]

    Название чугуна Состав в о/ц вес. Е( С 0) О.Я с 5 я Л X ю св [c.214]

    Металлические карбиды входят в состав чугунов и сталей, придавая им твердость, износоустойчивость и другие ценные качества. На основе карбидов вольфрама, титана и тантала производят сверхтвердые и тугоплавкие сплавы, применяемые для скоростной обработки металлов. Такие сплавы изготовляют методами порошковой металлургии (спрессовыванием составных частей при нагревании) в качестве цементирующего материала чаще всего используют кобальт и никель. Сплав, состоящий из 20% Hf и 80% ТаС, является самым тугоплавким известным веществом (т. пл. 4000°С). [c.453]


    В стали и чугуне содержится углерод, который, соединяясь с водородом, образует углеводороды. В результате этого изменяется химический состав и структура металла, ухудшаются его механические свойства, он теряет свою прочность. [c.31]

    При переработке чугунов с повышенным содержанием кремния во избежание подъема температуры плавки сверх оптималь-ной, в состав шихты вводят охладители в виде железной руды, боксита и агломерата. [c.85]

    Корпус редуктора чугунный. В состав внутреннего механизма редуктора входят горизонтальный ведущий, горизонтальный полый и вертикальный валы, которые вращаются в подшипниках ведущий и полый — в шариковых и роликовых, вертикальный — в одном шариковом и в двух роликовых [c.82]

    Электроды Т-500. В состав обмазки входят (по массе) феррохром—90% карбид бора —5% графит серебристый — 5% жидкое стекло —28—30% к общей массе сухих компонентов. Применяются для наплавки чугунных и стальных деталей, работающих в условиях абразивного изнашивания без ударной нагрузки (шнеки, лопасти мешалок и т. д.). [c.89]

    Определить массу бурого железняка, необходимую для выплавки передельного чугуна массой 5000 т с массовой долей Fe 0,92. По аналитическим данным в состав бурого железняка входит 0,80 массовой доли лимонита 2Ре20з-ЗН20. [c.222]

    Нефтепродукты из товарных резервуаров по самостоятельным трубопроводам забираются на прием насосов и подаются для налива в железнодорожные цистерны. Коммуникации и насосы выбираются из такого расчета, чтобы железнодорожный состав, поданный под налив, можно было заполнить за 1,25 ч. Обычно для налива используются высокопроизводительные центробежные насосы в стальном или чугунном исполнении. В северных районах СССР насосы в чугунном исполнении должны располагаться в закрытых отапливаемых зданиях. [c.41]

    Какая масса руды (РегОз), кокса и флюса (СаСОз) потребуется для выплавки литейного чугуна массой 1500 т с массовой долей Ре 0,941 Состав ши<ты Л 1И выплавки чугуиа (в массовых долях) руды 0,625, кокса 0,25 и флюса 0,125. Используется руда с массовой доле11 0,58. [c.223]

    Особую опасность представляет высокая агрессивность аммиака, воздействующего на медь, серебро, цинк и другие металлы и сплавы. Чугун и сталь наиболее пригодны в качестве материалов для изготовления оборудования и трубопроводов, предназначенных для аммиака. Однако безводный аммиак оказывает сильное коррозионное воздействие на стальные трубопроводы в присутствии двуокиси углерода и воздуха. Для предотвращения коррозионного растрескивания углеродистой стали сжиженный аммиак, транспортируемый по трубопроводам, должен содержать не менее 0,2% (масс.) воды. При меньщем содержании воды в аммиаке в присутствии воздуха возможно коррозионное растрескивание. Для транспортирования сжиженного аммиака применяют трубы, химический состав которых соответствует определенным требованиям. Трубы для аммиакопровода должны изготовляться по специальным техническим условиям, в которых помимо химического состава должны быть оговорены требования к механическим свойствам металла и сварке, допускам толщин стенок, диаметров труб и т. д. [c.35]

    Поршневые кольца для поршней ступеней сверхвысокого давления (рис. VII,104, б и VII.109, б, вариант V ) выполняются из чугуна с содержанием 2,8—3,1 % С 1,9—2,5% 51 0,7—1,0% Мп 0,3—0,45% Р 0,3% N1 0,75—1,15% Сг 0,8—1,0% Мо 5 не более 0,08%, В структуре чугуна — равномерно распределенный игольчатый карбид в перлитной основе. Количество связанного углерода 0,8—1,0%, Механические свойства предел прочности при растяжении = 340 А1н/м модуль упругости = = 0,14-10 Мн м твердость НВ 269—302. Состав бронзы в поясках этих колец 80% Си 12% РЬ 8% 5п. Ее твердость НВ 70. [c.409]

    Стадия подготовки исходных реагентов. Подготовка ортофосфорной кислоты заключается в ее упаривании в чугунных ваннах до пирофосфорной плотностью 1980-2020 кг/м . Физико-химические процессы, протекающие при упаривании кислоты, подробно рассмотрены в работе [34], ее примерный состав приведен на с. 32. [c.48]

    В литературе имеется несколько работ по действию воды или водных растворов солей на свободные карбиды и на карбиды, растворенные в металлах, в первую очередь в железе. Чистые карбиды большей частью с водой образуют ацетилен или метан. Имеется, однако, указание, что карбиды урана будто бы нри действии воды выделяют более сложные углеводороды, состав которых не был исследован. Были также получены какие-то углеводородные жидкие вещества и при действии воды или кислот на чугун, содержащий до 2—3% углерода, частично в виде карбидов. В этих опытах, описанных, к сожалению, без достаточных подробностей, остается неясным, не были ли эти жидкие углеводороды тем смазочным маслом, которое применялось при строгании или [c.186]

    Целью компонентного анализа является возможно более точное определение качественного и количественного состава исследуемого объекта или материала (например, рудных отвалов чугуна при выпуске из доменной печи содержимого нефтяных танкеров и т. д.). Естественно, невозможно обработать или исследовать весь исследуемый объект. Для анализа нужно отобрать пробу, которая бы достаточно полно воспроизводила или представляла состав анализируемого материала. Также очень важно, чтобы по возможности вся информация, содержащаяся в материале или в исследуемом объекте, была представлена в пробе. Чем больше объем пробы, тем лучше выполняется это требование идеальным случаем является идентичность объемов пробы и исследуемого объекта. Однако на практике в целях экономии затрат материала и времени отбирают возможно меньшие объемы проб. Поэтому особое внимание следует уделять тщательности обработки пробы и точному соответствию способа отбора пробы имеющимся методикам. Это особенно важно при отборе проб негомогенных материалов. [c.432]


    Закончим рассмотрение превращений, совершающихся в чугунах, при их охлаждении низке 1147 °С. При этой температуре растворимость углерода в 7-железе максимальна. Поэтому к моменту окончания первичной кристаллизации содержащийся в чугуне аустенит наиболее богат углеродом (2,14%). При охлаждении ниже этой температуры растворимость углерода в аустените падает (кривая Е5 на рис. 32..2) и углерод выделяется из него, превращаясь обычно в цементит. По достижении температуры 727 °С весь остающийся аустенит, в том числе входящий в состав эвтектики, превращается в перлит. Из сказанного следует, что области 7 отвечает смесь эвтектики с кристаллами аустенита и цементита, образовавшегося при распаде аустенита, области 8 — смесь эвтектики с кристаллами цементита. Поскольку при температурах ниже 727 °С аустенит эвтектики превращается в перлит, то областям 12 и 13, подобно области И, отвечает смесь перлита и цементита. Однако сплавы, принадлежащие к той и другой области, несколько различаются по структуре. Это различие обусловлено тем, что цементит сплавов области 13 образуется при первичной кристаллизации, в области 12 [c.621]

    Для изготовления аппаратуры, подвергающейся действию коррозионноактивных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхиосги [c.554]

    Все отчеты Ловица об анализах весьма обстоятельны, содержат подробные описания образцов, операций с ними и дают процентное содержание металлов и других компонентов. Иногда поступавшие для анализов образцы под соответствующими названиями оказывались после испытания совсем не содержаищми ожидаемых компонентов. Так, при анализе мокрым путем присланного образца чугуна . Ловиц обнаружил, что образец является отнюдь не чугуном, а скорее— колокольная композиция . Его анализ дал 76% меди, 14% олова, 6,5% цинка и 3,5% свинца. Установив этот неожиданный для чугуна состав, Ловиц, естественно, заинтересовался рудой, из которой был выплавлен сплав и потребовал немедленной присылки самой руды. В другом случае под именем молибдены Ловицу был прислан для анализа образец графита. [c.486]

    Электроды Т-600. Состав обмазки (по массе) феррохром — 75% феррс. итан —15% графит серебристый —5% карбид — 5% жидкое стекло —28—30% к общей массе сухих компонентов. Рекомендуются для наплавки стальных и чугунных деталей, работающих в условиях абразивного изнашивания и умеренных ударных нагрузок. [c.89]

    Повреждения пластмассового покрытия различных рукояток устраняются зачисткой, нанесением смеси фаолитовой замазки с графитом, служащим для придания черного цвета, сушки и шлифовки. Для заделки поврежденных участков аппаратуры применяются эпоксидные смолы. Эпоксидные смолы при отверждении образуют хрупкие покрытия. Для снижения их хрупкости и уменьшения внутренних напряжений в состав клея вводятся пластификаторы (полиэфиры, дибутилфталат, тиоколы, трикрезилфталат и др.) в количестве 5—30 частей (по массе). Промышленностью выпускаются эпоксидные компаунды, в составе которых уже имеется пластификатор. Для повыгаения прочности, адгезии и улучшения других свойств в эпоксидный клей вводятся наполнители — порошкообразные и волокнистые материалы, алюминиевая пудра, кварцевая мука или песок, асбест, стекловолокно, графит, стальные и чугунные опилки, тальк. Наполнители снижают усадку и сближают коэффициенты расширения эпоксидной смолы и металла. [c.179]

    Применение. Элементный фосфор используется для получения Р2О5, Н3РО4, в органических синтезах, в спичечном производстве (небольшое количество красного фосфора наносится на боковую поверхность спичечной коробки). Фосфор входит в состав ряда металлических сплавов (фосфористые чугуны, бронзы и др.), [c.423]

    Основными способами защиты от газовой коррозии являются легирование металлов, создание защитных покрытий и замена агрессивной газовой среды. Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. Для защиты используют и неметаллические покрытия, изготовленные из керамических и керамико-металлических (керметы) материалов. [c.687]

    При дополнительном легировании высококремнистого сплава молибденом в количестве 3—4 /о можно значительно повысить его стойкость в соляной кислоте. Такой сплав, известный под названием кремнистомолибденового чугуна, имеет следуюш,ий состав 0,5—0,6% С 15—16% Si 3,5—4% Мо 0,3—0,5% Мп, не более 0,1% Р н 0,1% S. Механические свойства сплава следующие предел прочности при изгибе 17—20 стрела прогиба (при [c.241]

    Свойства чугуна зависят от формы входящего в его состав графита, а также от структуры металлической основы. Обычно серый чугун хрупок при растяжепии или изгибе, так как содержит графит в виде пластинок. После сг.ециального отжига получают ковкий чугун, в котором графит имеет хлопьевидную форму. При введении добавок магния графит в чугуне приобретает сферическую форму (глобулярный графит)—это высокопрочный чугун. [c.310]

    Твердая фаза в области, лежащей между линиями ЕСР и Р8К с содержанием углерода более 2,14%, соответствующая белым чугунам, имеет различный состав. Доэвтектические чугзшы (2,14—4,3% углерода) состоят из аустенита и ледебурита, эвтектические (4,3%) из ледебурита и заэвтектические (4,3— 6,67% ) из цементита и ледебурита. При этом, в отличие от сталей, температура плавления чугунов (линия ЕОР) постоянна и не зависит от содержания в них углерода. [c.42]

    Восстановление примесей. В состав металлизированных материалов шихты (агломерат, окатыши) входят помимо оксидов железа оксиды различных элементов.. По возрастанию срол-ства к кислороду и л ермодинамической прочности их оксидов, они располагаются в ряд Си, Аз, N1, Р, 2п, Мп, V, Сг, 81, Т1, А1, М , Са. Степень восстановления этих элементов в доменной печи соответствует их положению в этом ряду. Медь, мышьяк, фосфор подобно железу почти полностью восстанавливаются и переходят в чугун ЦИНК, хотя и восстанавливается, но возгоняется ванадий и хром восстанавливаются на 70—90%. Алюминий, кальций и магний при доменной плавке не восстанавливаются. [c.65]

    Новейшим направлением в производстве стали является прямое восстаковление железной руды водородом, природным или генераторным газом, минуя доменные процессы. При этом получают губчатое железо, состав которого в отличие от доменного чугуна очень близок к стали. Мартеновский способ в настоящее время также устарел. Гораздо более прогреесивными являются конверторный и электроплавильный. Происходит бурное развитие технологии непрерывной разливки стали благодаря ее исключительно высокой эффективности. Основными направлениями экономического и социального развития до 2000 г. предусмотрено увеличить вып.чавку конверторной стали и электростали в 1,3 —1,4 раза, разливку стали непрерывным способом ке менее чем в 2 раза и выпуск металлических порошков более чем в 3 раза. [c.182]

    ГЕМАТИТ — широко распространенный минерал железа, одна из главнейших железных руд, химический состав FejOa, содержит около 70% железа. Г. имеет различную окраску от черного до красного, различную структуру и форму кристаллов, поэтому известно несколько разновидностей железный блеск, железная слюда, крас]1ый железняк, красная стеклянная голова, мартнт и др. Из Г. выплавляют чугун, кроме того, Г. применяется как минеральный пигмент (железный сурик), в прои шодстве клеенки, линолеума, красных карандашей и др. [c.68]

    Установка ДФС-51 предназначена для решения наиболее массовой задачи эмиссионного спектрального анализа в металлургической промышленности — экспрессного и маркировочного анализа простых и среднелегированных сталей, а также чугунов на содержание углерода, серы, фосфора и других элементов. В состав установки входят вакуумный полихроматор с решеткой 2400 штрих/мм (обратная линейная дисперсия 0,416 нм/мм, спектральный диапазон 175—340 нм, 24 выходных канала), источник возбз ждения спектра ИВС-6, ЭРУ-18, УВК Спектр 2-2 с печатающим устройством и стенд для очистки и осушки аргона. [c.71]

    КАРБИДЫ — соединения металлов или неметаллов с углеродом. К.— тугоплавкие твердые вещества, нерастворимые ни в одном из известных растворителей. Наиболее распространенный метод получения К- заключается в нагревании до температуры около 2000 С смеси соответствующего металла или его оксида с углем в атмосфере инертного или восстановительного газа. Преобладающее большинство К. (карбид бора В4С, кремния Si , титана Ti , вольфрама W , циркония Zr и др.) очень твердые, жаропрочные, химически инертные. К. применяют в производстве чугунов и сталей, различных сплавов современной техники, используют в качестве абразивных материалов, восстановителей, рас-кислителей, катализаторов и др. К. вольфрама и титана входят в состав твердых и жаропрочных сплавов, из которых изготовляют режущий и буровой инструменты из К. кремния (карборунд) изготовляют шлифовальные круги и другие абразивы К. железа Feg (цементит) входит в состав чугунов и сталей К. кальция применяется в производстве ацетилена, цианамида кальция и др. К. используют как материалы для электрических контактов, разрядников и многого др. (см. Кальция карбид. Карборунд). [c.119]

    Г. Лендель, Д. Гофман, Г. Брайт. Анализ черных металлов, Госхимтехнздат, 1934, (612 стр,). Авторы описывают арбитражные и экспрессные методы определения элементов, входящих в состав чугунов и сталей, методы определения кислорода, водорода и азота и включений окислов, методы анализа ферросплавов, а также руд, известгяков, шлаков, угля и других материалов, мета, 1лургнческого производства. [c.491]

    В промышленности М. получают электролизом водных растворов MnS04 или восстановлением его оксидов кремнием в электрических печах. М. входит в состав всех чугунов и сталей. Ферромарганец — сплав железа с М. (70—80%) — применяют для раскисления и легирования сталей. М. входит в состав специальных сплавов (манганин, марганцевые бронзы н др.). М. применяется в качестве антикоррозионного покрытия металлов. [c.154]

    Окись углерода СО играет важную роль в процессах выплавки чугуна и стали, входит в состав генераторного и водяного газа и используется как исходное сырье для получения многих органических веществ — синтетического топлива, метилового спирта СН3ОН, фосгена СООа и др.  [c.103]


Смотреть страницы где упоминается термин Чугун состав: [c.66]    [c.678]    [c.222]    [c.341]    [c.66]    [c.96]    [c.138]    [c.144]    [c.248]   
Справочник механика химических и нефтехимических производств (1985) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Чугунные

Чугуны



© 2024 chem21.info Реклама на сайте