Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисные слои

    Возникновение и характер протекания процессов схватывания металлов зависит от природы масел. Большое влияние на граничное трение оказывают окислительные процессы, так как продукты окисления углеводородных масел и поверхностных слоев металлов существенно изменяют интенсивность износа и величину коэффициента трения. Окисные слои играют важнейшую защитную роль, предотвращая интенсивное схватывание металлов. [c.133]


    Логарифмический закон роста окисной пленки (80) для случая контроля процесса окисления металла переносом электронов через окисный слой путем туннельного эффекта был получен впервые П. Д. Данковым (1943 г.). П. Д. Данков полагал, что в начальной стадии окисления туннельный эффект настолько [c.55]

    Таким образом, эта теория обосновывает возможность логарифмического закона роста толстых пленок, т. е. когда перенос электронов через окисный слой путем туннельного эффекта (см. гл. 3, 5) исключен. [c.79]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. Значительный интерес представляют также электрохимические системы, в которых на поверхности электрода при постоянном потенциале возможно одновременное протекание нескольких параллельных электродных процессов. На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.298]

    Формы разрушений нленок могут быть са.мые разнообразные (рис. 02). В тех случаях, когда прочность окисного слоя на [c.136]

    Анодное оксидирование производится в серной, хромовой или щавелевой кислотах и их смесях, химическое — преимущественно в щелочных растворах двухромовокислого калия или в хромовокислых растворах с добавками фторидов. Анодная обработка позволяет получать более толстый, плотный окисный слой, чем химическая обработка. [c.453]

    Одним из главных условий нормального роста пленки является подбор состава электролита и условий электролиза, при которых образующийся окисный слой в течение электролиза поддерживается как бы в разрыхленном, проницаемом для ионов состоянии. Максимальная толщина анодных пленок для каждого условия проведения процесса имеет предел, до которого возможен их рост. [c.454]


    Вязкая пленка продуктов анодного растворения, которой во многих работах приписывается главная роль в механизме полирования металлов, в данном случае рассматривается как возможный регулятор скорости растворения пассивирующего окисного слоя. [c.459]

    Необходимо учитывать далее возможность ступенчатого протекания каждой из двухэлектродных стадий, а также возможность параллельных реакций. Кроме того, трудности установления механизма электровосстановления кислорода усугубляются тем, что на многих металлах эта реакция протекает в условиях образования адсорбционных или фазовых окисных слоев, свойства которых зависят от потенциала, [c.340]

    При больших толщинах слоев (Аф мало) рост пленки происходит по параболическому закону, который легко получить, применяя к процессу диффузии ионов через окисный слой закон Фика. [c.383]

    На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.312]

    Таким образом, для понимания механизма пассивации необходимо изучение закономерностей образования, роста и свойств окисных слоев. Для этого используют разнообразные электрохимические и оптические методы, например, отражение света, эллипсометрию, дифракцию электронов и др. Ю. Эванс разработал иодидный метод отделения пассивирующей пленки от металла, который основан на том, что раствор + К1 проникает через поры пленки к поверхности металла и растворяет его. Отделенный от металла тонкий пассивирующий слой может быть далее подвергнут электронно-микроскопическому исследованию. [c.382]

    Рост непористых слоев происходит, если через эти слои возможна диффузия ионов растворяющегося металла и электронов, анионов, атомов кислорода или гидроксильных групп. Теория окисления металлов за счет диффузии ионов, составляющих окисный слой, была развита К. Вагнером. Согласно этой теории движение ионов определяется градиентом их электрохимического потенциала внутри пассивирующего слоя. [c.383]

    При небольшой толщине окисного слоя внутри его возникает электрическое поле большой напряженности. В таких условиях по И. Мотту и И. Кабрере существует экспоненциальная зависимость между плотностью тока и напряженностью поля в окисном слое  [c.383]

    В отличие от сплощных слоев рост пористых слоев может происходить за счет растворения металла в порах слоя. Если обозначить через 0 долю поверхности электрода, покрытую окисным слоем, то истинная плотность тока а растворения металла в порах равна [c.384]

    Во-первых, технология получения плотных и толстых окисных слоев является весьма сложной и вплоть до настоящего времени окончательно не разработана. [c.219]

    Термическое окисление кремния является одним из наиболее технологичных и широко применяемых на практике методов. Этот процесс проводят в ра,зли чных окислительных средах сухом и увлажненном кислороде, водяном паре при атмосферном и повышенном (до 500 атм) давлениях. Часто используют комбинированные режимы окисления, приводящие к образованию беспористых окисных слоев сравнительно большой толщины с хорошими электрическими свойствами, которые, к тому же, можно варьировать в определенных пределах. Иногда для ускорения термического окисления прибегают к использованию активаторов. Как правило, термическое окисление проводят в проточных системах, но иногда используют и оксидирование в герметичных реакторах, выдерживающих высокие давления. Однако эти способы не лишены некоторых недостатков. Так, при создании толстых (2 —3 мкм) изолирующих пленок (при изготовлении ИС с диэлектрической изоляцией) эти методы неприемлемы, поскольку уже при толщине окисла порядка 1,5 мкм скорость роста пренебрежимо мала. Методы термического окисления невозможно применить и при пассивации готовых структур из-за температурных ограничений (не более 500°С при применении алюминиевой разводки), [c.110]

    Для получения более толстых пленок (40—60 мк) применяют раствор серной, хромовой или щавелевой кислоты. При этом одновременно протекают процессы образования пленки и ее растворения. В начале превалирует первый процесс, но по мере увеличения толщины окисного слоя растет его сопротивление и повышается количество выделяемого тепла. Поэтому ускоряется растворение, процесс же оксидирования замедляется и может произойти даже местное разъедание окисного слоя. Вследствие растворяющего действия электролита окисная пленка имеет заметную пористость, составляют,ую для сернокислотного способа оксидирования 10— 15%. Состав окисного слоя зависит от условий его образования. Часть слоя, прилегающего к алюминию, представляет собой у-А Оз, наружная часть его гидратирована и включает адсорбированные компоненты электролита. [c.223]


    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    П, Д. Данков применил более тонкий электронографический метод исследования. Благодаря тому, что электроны не проникают внутрь металла, а рассеиваются поверхностными слоями, этот метод позволяет получить представление о состоянии поверхностного слоя. Электронограммы показали явное различие между строением поверхностей активного и пассивного металлов. В частности, было установлено, что при пассивировании йикеля на нем образуется NiO, железа-у-РеаОз, алюминия — AI2O3. Толщина окисных слоев составляет всего несколько десятков ангстрем. [c.636]

    Согласно теории Хауффе и Ильшнера (1954 г.), скорость образования очень тонких (тоньше 50 А) пленок может контролироваться переносом электронов через окисный слой путем туннельного эффекта. Число электронов N с массой т и кинетической энергией Е = 1/2то (где о — компонента скорости в направлении, нормальном к энергетическому барьеру), проходящих сквозь прямоугольный (для упрощения вывода) энергетический барьер высотой и и шириной к, определяется по уравнению [c.48]

    При этом / 1 — величина порядка 100—1000 А (см. выше), а полученная формула пригодна лишь при условии к < ку. Из этого уравнения видно, что скорость роста окисного слоя велика для малых значений к. Кроме того, пленка должна расти до какой-то определенной предельной толщины Лпред. Если предположить, что рост пленки практически прекратился, когда скорость йк/с1х близка к 10 см/с, а Ыо= Л нQv—величина порядка 10 см/с или меньше, то мы будем иметь соотношение [c.54]

    П т ком глучяе сопротивление этого окисного слоя может Сыть хорошо описано с помощью отношения (см. рис. 19, 20) === 0,15 К) - Вт/ (м- К). [c.432]

    Кислородный электрод готовится аналогичным способом. В отличие от водородного электрода в качестве катализатора здесь применяют серебро Ренея. Исходный сплав для его получения содержит 657о Ад и 35% А1. Кислородные электроды при работе подвергаются заметному коррозионному разрушению. Для повышения стойкости поверхность металла защищают окисной пленкой. Для этой цели электрод пропитывают раствором гидроокиси лития и нагревают на воздухе при 700—800 °С. Происходит поверхностное окисление металла. Ионы лития, внедряясь в кристаллическую решетку окислов никеля, снижают электрическое сопротивление образующегося окисного слоя. [c.53]

    Как известно, алюминий и его сплавы всегда покрыты тонкой (0,02—0,04 мкм) естественной окисной пленкой А12О3 или А)20з- пНгО, которая, однако, не может служить надежной защитой от коррозии в атмосфере, особенно загрязненной хлоридами. Поэтому для создания более толстого сплошного окисного слоя изделия из алюминия и его сплавов после очистки от различных загрязнений подвергаются анодному или химическому оксидированию. [c.453]

    Остановимся вначале на некоторых особенностях строения и роста фазовых окисных слоев. По структуре и свойствам эти слои делят на сплошные (плотные) и пористые. Примером сплошных слоев могут служить пассивирующие слои на тантале, цирконии, алюминии, ниобии. Сплошные слои имеют стеклообразную или аморфную структуру, обладают достаточно большим электрическим сопротивлением и иногда проявляют выпрямляющее действие, проводя ток лишь в том случае, если металл является катодом. Типичным примером пористых слоев могут служить окисные и гидроокисные слои на кадмии, цинке, магнии, и слои имеют кристаллическую структуру и низкое электрическое сопротивление (порядка бмов). Возможно также образование слоев смешанного типа. Так, на алюминии в сернокислых растворах можно наблюдать сплошной слой со стороны металла и пористый со стороны раствора. Кроме того, при поляризации электрода или во времени могут происходить переход одного типа слоя в другой, кристаллизация аморфных слоев, изменение их состава и структуры. [c.383]

    Изменение свойств окисного слоя при поляризации электрода было обнаружено при изучении пассивации никеля в кислых растворах потенциостатическим и эллипсометрическим методами (Дж. Бокрис). В активной области на поверхности электрода образуется предпасси-вирующий окисный слой толщиной в несколько десятков ангстрем. При потенциале пассивации толщина этого слоя не изменяется, тогда как показатель преломления и коэффициент светопоглощения претер- [c.383]

    При применении испытательных машин источники шумов — системы нагружения и крепления. Возможной причиной помех может быть разрушение покрытия изделия (лаков, красок) или поверхностного окисного слоя. Чем выше частота, на которой ведут испытание, тем лучше отстойка от шумов, но тем быстрее затухают с расстоянием сигналы АЭ. Это вызывает необходимость близкого расположения ПЭП в системах наблюдения за АЭ некоторых объектов. Отсюда следует, что чрезмерное повышение частоты нежелательно. [c.180]

    Если окончательный химический состав окисных пленок при упомянутых выше условиях не зависит от применявшегося травителя, то их структура и толщина могут быть весьма различными. Это различие, однако, является не столько качественным, сколько количественным. Так, даже компактные окисные пленки, образующиеся при травлении в смеси НР + HNOз, обладают мелкопористой структурой и не могут надежно изолировать поверхность кристалла от воздействия окружающей атмосферы. В связи с этим заметим, что окисные слои, используемые специально для защиты поверхности, вообще не должны содержать химически связанной воды, а их толщина должна составлять несколько тысяч ангстрем ( 1 Л1к). Такие слои могут быть получены путем высокотемпературного окисления (Т 1300° К) в атмосфере сухого кислорода. По своей структуре и химическим свойствам они соответствуют стеклообразным соединениям типа кварца. [c.117]

    Большинство дефектов упаковки в пленке зарождается на границе с подложкой. Это доказывают одинаковые размеры замкнутых фигур роста (имейщих в случае ориентации (111) вид равносторонних треугольников), которые увеличиваются с увеличением толщины пленки. Дислокации, присутствующие в подложке, распространяются и в эпитаксиальный слой. Помимо этого, дополнительным источником возникновения дислокаций в пленке являются механические нарушения поверхности. Зародыши кристаллизации часто образуются на механических нарушениях. Однако наиболее важной причиной появления дефектов упаковки в осажденном слое является неполное удаление остаточного окисла с поверхности подложки до начала эпитаксиального роста. Наличие островков окисного слоя вызывает появление ступенек на поверхности подложки, которые и служат исходными участками для образования дефектов. [c.140]


Смотреть страницы где упоминается термин Окисные слои: [c.56]    [c.136]    [c.136]    [c.147]    [c.291]    [c.433]    [c.200]    [c.109]    [c.39]    [c.41]    [c.200]    [c.16]    [c.383]    [c.384]    [c.215]    [c.216]    [c.111]   
Электрохимия металлов и адсорбция (1966) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте