Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологическая коррозия активность

    Высокая агрессивность и биологическая активность морской воды, способствующая биологической коррозии и обрастанию аппаратуры при ее использовании, рассмотрены в предыдущей главе. Они определяют необходимость использования специальных мер защиты аппаратуры от коррозии в морской воде, тем более что микробиологическое обрастание толщиной 250 мкм на теплообменнике, в котором протекает морская вода, на 50 % уменьшает коэффициент теплопередачи. [c.26]


    Переработка ПВХ проводите при таких высоких температурах, что лишь некоторые пестициды остаются в материале без изменения. Необходимо выбирать добавки, температура разложения которых выше температуры переработки. Они должны быть нелетучими, хорошо совмещаться, но не взаимодействовать с компонентами композиции, проявлять высокую биологическую активность в минимальных концентрациях, не оказывать отрицательного влияния на свойства готового материала. Кроме того, пестициды не должны растворяться в воде, должны удобно вводиться в ПВХ-композиции, обладать низкой токсичностью. Отсюда понятно, почему лишь небольшой ассортимент добавок используется в настоящее время для защиты пластмасс и, в частности, ПВХ от биологической коррозии. [c.332]

    Азотсодержащие соединения находят широкое применение в производстве синтетических волокон, пластмасс, искусственной кожи, каучуков, поверхностноактивных и моющих веществ, ионообменных смол, фармацевтических препаратов, присадок к топливам и маслам, ингибиторов коррозии, биологически активных веществ, флотореагентов, растворителей, текстильно-вспомогательных веществ, бактерицидов, гербицидов, фунгицидов, ускорителей вулканизации резины, красителей, абсорбентов кислых газов, взрывчатых веществ, ракетных топлив и для многих других целей. [c.278]

    Данные рис. 5, а также зависимость коррозии металлов в морской воде от различных факторов показьшают, что предсказать совместное влияние всех факторов затруднительно. Так, повышение температуры в соответствии с законами термодинамики должно приводить к увеличению скорости коррозии. Однако при рассмотрении морской коррозии необходимо зл)есть одновременное влияние других факторов при повышении температуры. Растворимость кислорода при этом падает, биологическая активность возрастает, а образование защитного известкового осадка облегчается. Поэтому конечный результат совместного влияния нескольких факторов может быть выявлен только в результате самостоятельных исследований в каждом конкретном случае. При этом суммарное воздействие факторов, влияющих в одинаковом направлении, обычно больше суммы воздействий каждого фактора в отдельности. [c.18]

    На коррозионную активность почвы влияет наличие бактерий. В чем же состоит ускоряющее действие, оказываемое микроорганизмами на протекание коррозионных процессов В анаэробных условиях процесс коррозии заторможен из-за отсутствия катодных деполяризаторов. Незначительные количества атомарного водорода, образующегося в нейтральных грунтах на катодных участках поверхности труб, ни тем более связанный в сульфатах кислород не оказывают заметного влияния на скорость катодных процессов. При наличии в почве сульфатвосстанавливающих бактерий, рост которых связан с реакцией восстановления ионов серы водородом, в результате биологического процесса образуется свободный кислород, используемый микроорганизмами для дыхания и участвующий в катодной реакции в качестве деполяризатора. Образующиеся при этом ионы восстановленной серы 8 вызывают снижение pH среды, что благоприятствует протеканию катодного процесса с водородной деполяризацией, а выпадение в осадок нерастворимого сернистого железа активизирует процесс анодного растворения трубной стали. Поскольку этот процесс происходит без торможения, он может продолжаться непрерывно. При величине pH > 9 сульфат-восстанавливающие бактерии погибают, поэтому эффективным методом борьбы с ними является защелачивание среды. [c.16]


    Физико-химические и биологические свойства почвы тесно связаны со спецификой климатических условий, и она оказывает определенное воздействие на коррозионную активность околоземного слоя атмосферы. В зависимости от состава и внешней среды она может ускорить или затормозить процесс атмосферной коррозии металла. Влага и повышенная температура ускоряют физико-химические и биологические процессы в почве. Количество влаги в ней зависит не только от характера частиц почвы и количества атмосферных осадков, но и от ее способности удерживать почвенную влагу. Чем больше коллоидных частиц в почве, тем выше ее адсорбционная способность. [c.20]

    Скорость коррозии в морской атмосфере в большой степени зависит от количества частиц соли и тумана, оседающих на поверхности металла. Осаждение соли зависит от направления и силы ветра и волн, высоты над уровнем моря, длительности и т. п. Поскольку соли морской воды (хлориды кальция и магния) гигроскопичны, то на поверхности металла может образоваться жидкая пленка. Солнечный свет может ускорять фоточувствительные коррозионные реакции па таких металлах, как железо и медь, а также стимулировать биологическую активность грибов и микроорганизмов. [c.29]

    В Лаборатории прикладных исследований ВМС США было исследовано влияние микробов на коррозию и разрушение металлов в глубоководных условиях, связанных с большим гидростатическим "давлением, осмотическим давлением и пониженными температурами воды. Все перечисленные физические факторы обычно подавляют клеточную активность (за исключением некоторых адаптированных к таким условиям организмов) и поэтому могут оказывать существенное влияние на биологические коррозионные механизмы. Необходимость в подобных исследованиях возникла в связи с ожидаемым использованием дна океана для различных целей, в том числе для сооружений систем противолодочной обороны. Натурные испытания материалов были предприняты с целью получения надежных коррозионных данных в реальных условиях. Эти данные служат критерием при анализе результатов ускоренных коррозионных лабораторных испытаний и, конечно же, дополняют другие данные о коррозионном поведении различных металлов на больших глубинах  [c.435]

    Пятая группа — низинные торфы высокой степени разложения (50-60 %) с большим содержанием гуминовых кислот и азота представляют интерес для получения ростовых и биологически активных веществ, ингибиторов коррозии металлов, а также для производства органических удобрений и топливных брикетов. [c.436]

    Масла в процессе использования загрязняются водой, пылью, продуктами коррозии металлов, продуктами окисления, образующимися при контакте с воздухом и под воздействием повышенных температур, разжижаются попадающим в них топливом, ухудшают свои характеристики под действием других факторов их функциональные свойства значительно изменяются. Отработавшее масло подлежит утилизации. Способы утилизации зависят от состава исходного масла (количества и типа присадок, компонентного состава углеводородов) и степени воздействия на окружающую среду и человека накопившихся в них вредных веществ. Так, масла из бензиновых двигателей становятся канцерогенными после пробега свыше 5 тыс. км, в маслах из дизелей накопление биологически активных полициклических аренов (продуктов неполного сгорания топлив и термического разложения масел) происходит в гораздо меньшей степени. [c.354]

    Аэробная коррозия проявляется в средах, содержащих достаточное количество свободного и растворенного в воде кислорода. Аэробные микроорганизмы могут вызывать коррозию углеродистой стали, нержавеющей стали, например стали 321, алюминия и его сплавов, таких как 6061-Т6, 2014Т6 и 1100, меди и ее сплавов и других конструкционных материалов, применяемых в химической промышленности. С увеличением концентрации кислорода в технологических средах скорость биологической коррозии увеличивается. Вместе с тем имеются коррозионно-активные микроорганизмы, например сапрофитные семейства Pseudomonada eae, которые ингибируют процесс коррозии углеродистой стали. При этом ингибиторный эффект усиливается с увеличением дегидрогеназной активности бактерий [35]. [c.58]

    Анализируя причины появления микропримесей в авиационных маслах, авторы работы [6] отмечают взаимосвязанность различных факторов, влияющих на загрязненность масел. Например. при попадании влаги из атмосферы помимо ухудшения качества масла возникает также электрохимическая коррозия В свою очередь продукты коррозии — оксиды и-гидроксиды железа— являются активными катализаторами окислительных процессов в масле и способствуют образованию в нем осадков. Присутствие воды является одним из условий, при которых происходит микробиологическое загрязнение масла. Размножение микроорганизмов может вызвать биологическую коррозию металлов и разрушение защитных покрытий. [c.9]

    А,Г. Прогнозирование на ЗВМ биоцидной активности реа-гвитов-ингибиторон биологической коррозии//Сб.тезисов иП pii n. научно-технической конф. молодых ученых и специалистон по проблемам сбора, подготовки и транс - [c.167]


    Биологическое поражение нефтяных масел существенно повышает их коррозионную активность по отношению к металлам, в том числе к алюминию и его сплавам, не корродирующим при контакте с маслами в обычных условиях эксплуатации. Это связано с усилением химической коррозии из-за образования в масле при жизнедеятельности микроорганизмов таких агрессивных веществ, как органические и минеральные кислоты, аммиак, свободная сера, двуокись углерода, сероводород. Может наблюдаться Также электрохимическая коррозия— на отдельных участках поверхности металла образуются колонии микроорганизмов (в виде наростов), что усиливает аэрацию, увеличивает концентрацию кислорода на этих участках и создает там-разность потенциалов. Другой вид электрохимической коррозии возникает в результате жизнедеятельности сульфатвосстанав-ливающих бактерий, под действием которых из сульфатов образуются ионы серы, реагирующие затем с металлом, образуя сульфиды. Этот процесс получил название катодной деполяризации. Коррозии способствует склонность многих микроорганизмов к разрушению [c.71]

    Сульфиды применяются в качестве компонентов для синтезов красителей, лекарственных и биологически активных веществ. Продукты окисления сульфидов — суль([)оксиды, сульфоны и сульфокислоты находят применение как ргстворители и экстрагенты металлов из водных растворов (Ид, Ау, Аи, Рс1, Р1, 1г). Как экстрагент в нефтехимии используется сульфолаи (тиофансульфон) для экстракции аренов. Сульфиды и сульфоксиды являются эффективными ингибиторами коррозии металлов, противозадирными и анти-окислительными присадками. Кроме того, оии употребляются как флотореагенты, поверхностно-активные вещества, пластификаторы пластмасс, а также инсектициды, гербициды и фунгициды. [c.200]

    Сульфиды являются исходным сырьем в производстве красителей лекарственных и биологически активных веществ препаратов для декорирования стекла, металла, дерева продуктов окисления — сульфоксидов, еульфонов и алкилсульфокислот растворителей и экстрагентов ингибиторов коррозии металлов противозадирных, антиокислительных присадок к топливам и маслам флотореагентов и поверхностно-активных веществ пластификаторов высокополимеров препаратов для сельского хозяйства тиофенов. [c.54]

    Показано [165], что на основе этих соединений и комплексов могут быть созданы высокоэффективные экологически чистые ингибиторы коррозии (включая коррозионно-усталостное разрушение, фреттинг-коррозию) углеродистых сталей в водных средах с различными значениями pH и в биологически активных средах. Они хорошо зарекомендовали себя в различных областях техники как ингибиторы солеотложения. Кроме того, соединения и комплексы, содержащие переходные металлы и их соли, снижают пористость защитных лакокрасочных покрытий, повышают продолжительность их набухания, способствуют сохранению адгезии, а также позволяют улучшать антифрикционные, противоизносные и противопитгинговые свойства масел. [c.292]

    Биологическая стойкость. Некоторые микроорганизмы и грибки способны развиваться в топливах при хранении в резервуарах в условиях субтропического и тропического климата, усваивая углеводороды (н-алканы) и выделяя кислые и поверхностно-активные продукты жизиедеятельности. Эги продукты оказывают отрицательное влияние на работу топливных систем, вызывают коррозию металлических деталей агрегатов, забивку топливных фильтров. [c.89]

    Речь идет, конечно, не о простом увеличении числа синтезируемых соединений, но о создании научных основ производства химикатов и материалов с заданными свойствами, например полупроводников, катализаторов, особо прочных материалов, ферросплавов, лигатур, ингибиторов коррозии и солеотложения и т. д. Подобные вещества относятся к продукции малотоннажного химического производства. Но они могут принести огромный эффект в деле интенсификации любой отрасли экономики. Достаточно сказать, что на открытие новых катализаторов сегодня возлагаются основные надежды в интенсификации развития химической промышленности [5—7]. Поиск такого рода новых химикатов и материалов ведется повседневно. Задача заключается, однако, в том, чтобы его упорядочить, сделать более цленаправленным, например уподобить поиску и синтезу биологически активных веществ при помощи программирования на ЭВМ, как это делается в Институте органического синтеза АН ЛатвССР [63] и пока в немногих других научных учреждениях СССР. Решение этой задачи должно быть основано, таким образом, на принципиально новой идеологии [64], позволяющей полностью освободиться от бесчисленных проб и ошибок или, по крайней мере, сократить число опытов в 5— 10 раз. К сожалению, эта новая идеология воспринимается экспериментирующими химиками подчас консервативно. Традиционные же пути оказываются в этих поисках недостаточно эффективными. [c.275]

    Линейные и циклические ацетали (простые эфиры геминальных гликолей) представляют важный и интересный класс органических соединений и находят широкое применение в различных областях народного хозяйства. Многочисленные данные свидетельствуют о том, что ацетали могут использоваться как зкстрагенты, ингибиторы коррозии, растворители, реагенты при физико-химическом разделении минерального сырья, биологически активные вещества и т.д. [10, 14, 22, 23, 27, 29, 40, 41, 55, 56, 64,67,70]. [c.146]

    При коррозии в морской воде играет очень важную роль не только скорость общей коррозии, но и глубина питтинговой коррозии, которая, в свою очередь, зависит и от биологической активности среды. Сравнительные данные общей и питтинговой коррозии для стали показаны на рис. 1.15 [221, из которого видно, что в начальный период средняя глубина питтинговой коррозии растет намного быстрее, чем общей коррозии. [c.18]

    Донные отложения могут несколько отличаться по составу и биологической активности. В иле часто присутствуют сульфатвосстанавливающие бактерии. Следует ожидать, что отсутствие окислительных агентов должно приводить к локальной потере пассивности и в результате к питтинговой н щелевой коррозии. Так п происходит в действительности. Как видно пз табл. 19 (испытания в Тихом океане у побережья Калифорнии), в большинстве случаев наблюдается примерно одинаковое коррозионное поведение сплава в июле и в расположенных непосредственно над ним слоях воды. [c.64]

    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    В гораздо более агрессивной среде, какой является морская вода, скорость коррозии определяется деятельностью и взаимодействием морских микроорганизмов и бактерий. В условиях постоянного полного погружения стальные пластины сначала корродировали с очень высокой скоростью, но быстро обрастали морскими организмами, в дальнейшем этот слой оказывал существенное защитное воздействие. В отсутствие обрастания наибольшие коррозионные потери массы (среди четырех партий образцов) наблюдались бы, несомненно, именно з морской воде. Такое предположение подтверждается сравнением данных для солоноватой и морской воды на рис. 121, а также результатами, полученными при испытаниях в Карибском море, которые обсуждаются ниже. В слегка солоноватой воде обрастание морскими организмами не присходит, поэтому скорость коррозии выше, чем в морской воде, хотя сама по себе малая соленость уменьшает коррозионную активность воды. В результате коррозионные потери в солоноватой воде после 4-летней экспозиции были гораздо выше, чем в морской воде, где проявилось защитное действие биологического обрастания. [c.443]

    До сих пор мы ограничивались рас-смотрением общей поверхностной кор-розии, т. е. средней глубины проникно-вения коррозии, рассчитанной по поте- рям массы образца. Для углеродистой стали этот параметр непосредственно связан с уменьщением временного сопро-тивления материала и, таким образом, является хорошим показателем изменения прочности конструкции. В тех слу-чаях когда наибатьшие неприятности могут быть связаны с перфорацией конструкции или контейнера, важным параметром коррозии становится глубина питтинга. Поэтому интересно рассмотреть и влияние биологической активности на скорость питтинговой коррозии. Некоторые результаты, полученные в ходе [c.445]

    Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки. [c.453]

    С, ira.n 135°С d 0,886, 1,43 хорошо раств. в воде, СП., ацетоне, бензоле, эф. гигр. КПВ 8,6—17%, г, 38 °С, т-ра самовоспламенения 225°С. Получ. взатюд, диметиламина с окисью этилена. Примен. замасливатель ацетатного шелка в произ-ве лек. ср-в, ингибиторов коррозии, )мульгаторов, красителей, текстильно-вспомогат. в-в, биологически активных в-п (напр., холина) отвердитель эпоксидных смол. Раздражает кожу, слизистые оболочки дыхат. путей и глаз (ПДК 5 ыг/м ). [c.172]

    Кубовый остаток, имеющий удельную активность, на несколько порядков большую удельной активности исходной воды, из выпарного аппарата периодически направляется в сборный монжюс. Далее этот раствор при помощи бессальниковых насосов, сжатого воздуха или вакуума передается в специальное хранилище или герметичный контейнер, имеющий биологическую защиту, для последующей транспортировки в централизованное хранилище. Ко всем операциям и оборудованию, связанным с кубовым остатком, должны быть предъявлены специальные требования, относящиеся к работе с радиоактивными растворами (особенности компоновок таких узлов разобраны в гл. VI). В связи с тем, что способ хранения высокоактивных отходов в жидком виде имеет существенные недостатки (коррозия емкостей, в которых находится раствор необходимость отвода тепла, выделяющегося в результате распада радиоактивных изотопов удаление водорода, образующегося при радиолизе воды, и пр.), предложены различные методы отверждения радиоактивных жидких отходов. [c.204]

    С б являются регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. Среди регуляторов полимеризации наибольшее значение имеют третичный до-децилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, в фармакологии, косметике и многих других областях. Сульфиды служат компонентами при синтезе красителей, продукты их окисления - сульфоксиды, сульфоны и сульфокислоты - используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, великолепной химической стойкостью и совместимостью с самыми различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается поли-фенилсульфидный бум . Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы. [c.83]

    Большой интерес представляют окислительные трансформации 1,3-Диоксацикло-мканов и их производных, поскольку продукты этих реакций находят широкое практическое применение в промышленности и органическо.ч синтезе (ингибиторы коррозии металлов, компоненты смазочных масел и топлив, растворители). С другой стороны, интерес к механизму окисления 1.3-диоксаццклоалканов связан с тем. что молекулы биологически активных соединений часто содержат диоксолановый или диоксановый фрагменты .  [c.79]

    В настоящее время четко обозначилась тенденция развития исследований в области химии и химической технологаи в направлении разработки удобных методов получения биологически активных соединений, синтонов, а также фрагментов сложных молекул природного происхождения, ингибиторов коррозии металлов, фло-тореагентов, экстрагентов, присадок к маслам и топливам, заказных химических реактивов и других продуктов малотоннажной химии для приоритетных отраслей науки и техники. [c.3]

    Сульфиды применяют для синтеза красителей и биологически активных веществ. Продукты окисления сульфидов - сульфоксиды, сульфоны и сульфокислоты находят применение как растворители и экстрагенты металлов (таких как золото, платина, серебро и др.). Сульфиды и сульфоксиды являются хорошими (шгибиторами коррозии металлов, применяются как флотореагенты, поверхностно-активные вещества, пластификаторы, а также инсектициды, гербициды и фунгициды. [c.78]


Смотреть страницы где упоминается термин Биологическая коррозия активность: [c.434]    [c.167]    [c.18]    [c.201]    [c.68]    [c.43]    [c.68]    [c.15]    [c.17]    [c.30]    [c.441]    [c.449]    [c.66]    [c.631]    [c.444]    [c.5]   
Морская коррозия (1983) -- [ c.449 , c.450 ]




ПОИСК





Смотрите так же термины и статьи:

Биологическая коррозия



© 2025 chem21.info Реклама на сайте