Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены химия

    Отличия в свойствах элементов главной й дополнительной подгрупп в пределах одной и той же группы периодической системы возрастают с повышением номера группы. Если свойства щелочных металлов и свойства элементов подгруппы меди (Си, Ag, Аи) не слишком сильно отличаются друг от друга, то в химии галогенов, с одной стороны, и в химии элементов подгруппы марганца (Мп, Тс, Не), — с другой, совсем уж мало общего. Что же в таком случае объединяет эти элементы в одну группу периодической системы Прежде всего то, что атомы всех элементов одной и той же группы характеризуются одинаковым числом валентных электронов, что [c.24]


    Особенности химии фтора. Как и в других группах системы, химия типических элементов — фтора и хлора — имеет целый ряд особенностей. Наиболее ярко это проявляется у фтора. Специфика поведения фтора по сравнению с другими галогенами связана не только с наименьшим радиусом, наибольшими потенциалом ионизации и ОЭО атомов фтора. Главное, что определяет особенности химии фтора,— ограниченные валентные возможности и степени окисления фтора. Атом фтора не располагает -орбиталями, а промотирование электронов на орбитали с главным квантовым числом 3 для него энергетически невыгодно. В результате в химии фтора представлены только две степени окисления Ои — 1. Отсюда следует, что фтор только окислитель, а восстановителем быть не может. Поэтому для фтора неизвестны соединения с положительной сте- [c.350]

    До сих пор речь шла о органических соединениях, молекулы которых состоят из атомов углерода, водорода, галогенов и кислорода. Мы выяснили, что такие соединения весьма многообразны - от природного газа и бензина до каучуков И пластмасс. Однако органические соединения могут быть еще более разнообразными, экзотическими и не менее важными веществами такими, как витамины, лекарственные препараты, моющие и взрывчатые вещества, соединения, придающие окраску, наконец, соединения, входящие в состав живых тканей, которые управляют химией живых организмов, передают детям свойства родителей, благодаря которьш живая ткань отличается от неживой материи. Все это - производные углеводородов, но в них огромную роль играют атомы азота (прежде всего), серы и фосфора. Перейдем к рассмотрению таких соединений. [c.125]

    Перечислите все отличия химии фтора от химии остальных галогенов. [c.154]

    Приведем еще один важный для химии случай координативной. связи. Так, вводных растворах кислот катион Н+ (протон) не может существовать отдельно. Он образует с молекулой воды катион оксония Н+-Ь НзО = НзО" . При этом обобществляется электронный дублет атома кислорода. Следовательно, в данном случае-кислород — донор, а водород — акцептор электронного дублета (рис. 1У-15). Отметим, что электронные пары атомов кислорода, азота, галогенов и др. могут служить основой для возникновения координативной связи только в том случае, если эти атомы находятся в валентном, но не в свободном состоянии. [c.91]

    В чем заключается отличие электронного строения атома фтора от строения атомов других галогенов К каким особенностям химии фтора приводит это отличие  [c.107]

    Развивая основной закон химии — периодический закон, его автор, Д. И. Менделеев разработал также систему элементов , основанную на их атомном весе и химическом сходстве. Благодаря этому ученым удалось установить взаимосвязь между всеми химическими элементами, предугадать и открыть новые химические элементы. Ниже приводится краткий обзор свойств элементов главных подгрупп периодической системы, начиная с галогенов (табл. 13). [c.58]


    Органическая химия-это химия соединений углерода точнее, химия углеводородов и их производных. Органические соединения обязательно включают в себя атомы углерода и водорода и часто содержат также атомы кислорода, азота, галогенов и других элементов. Многообразие органических соединений, их свойства и превращения объясняет теория химического строения (А. М. Бутлеров, 1861-1864 гг.). [c.194]

    Органическая химия — это химия углеводородов п их производных, содержащих атомы так называемых элементов-органогенов кислорода, азота, фосфора, серы или галогенов. [c.7]

    Калориметрический метод определения теплот сгорания в калориметрической бомбе первоначально был разработан применительно к органическим соединениям, подавляющее большинство которых экзотермически окисляется кислородом. Затем по мере развития калориметрии в течение последних десятилетий широкое распространение получил метод определения теплот взаимодействия неорганических соединений с кислородом и галогенами. Так, методом сожжения в атмосфере фтора под давлением были установлены стандартные термодинамические характеристики ряда фторидов, путем замещения хлора на кислород — теплоты образования некоторых оксидов, окси-хлоридов и хлоридов. Поэтому в настоящее время метод определения тепловых эффектов с помощью калориметрической бомбы можно считать инструментальным ме+годом неорганической химии. [c.18]

    Сколько было споров и предложений по поводу размещения водорода в таблице, да и сегодня еще нет единого мнения на этот счет. А все объясняется отсутствием четких критериев "связки всех элементов в единое целое — систему. Нет возможности (да и смысла) анализировать все попытки определиться, наконец, с местом водорода в системе. Остановлюсь только на одном, особо характерном примере. 3. Р. Каика-цишвили [15] пишет Химия водорода не только многообразна, но и своеобразна. Свойства его настолько индивидуальны, что химики до сих пор не могут окончательно договориться о месте водорода в таблице Менделеева. И в научной, и в учебной литературе еще несколько лет назад печатались менделеевские таблицы с водородом, расположенным в 1-й группе и в VII — в скобках. Это отражало двойственность химического поведения элемента № 1. С одной стороны, налицо сходство водорода с самыми типичными щелочными металлами, а с другой — есть у него сходство и с самыми типичными неметаллами — галогенами. Существует также мнение о сходстве водорода с элементами подгруппы бора и углерода. Четыре точки зрения очень далеки одна от другой , — заканчивает в недоумении автор статьи. [c.171]

    В пределах каждой группы свойства элементов основных и первых побочных подгрупп не совпадают, однако их отличие меняется от группы к группе. Будучи значительным в первой группе, оно затем ослабевает, вновь усиливается и делается очень большим в седьмой группе. Так, если в подгруппу меди входят малоактивные металлы (Си, Ag, Ли), резко отличающиеся от активных металлов подгруппы лития (в частности, от К, КЬ, Сз), то элементы III группы сравнительно близки по своим свойствам, а элементы подгруппы Мп сильно отличаются от галогенов. Однако, подчеркивая степень отличия, всегда следует помнить о чертах сходства всех элементов данной группы — обстоятельство, которое является предметом подробного обсуждения в курсе неорганической химии (см. также стр. 97—98). [c.62]

    Первоначально термин окисление был введен в химию, как присоединение к элементам кислорода. Понять взаимосвязь приведенного в начале параграфа определения с исторически первым определением нетрудно, если вспомнить, что кислород — наиболее электроотрицательный элемент после фтора, и, следовательно, во всех соединениях кислорода, кроме РзО, электронная пара, образующая химическую связь кислорода с каким-либо другим атомом, оттянута в сторону кислорода. Таким образом, связанный с кислородом атом частично лишен своего электрона (в случае кратной связи — двух электронов) и поэтому может считаться окисленным. Число электронов, отданное атомом полностью (в случае образования иона) или частично (в случае образования связи с более электроотрицательным элементом), называют степенью окисления элемента. Чаще всего этим понятием пользуются применительно к соединениям кислорода и галогенов, хотя в принципе можно его распространить и на другие элементы и считать, например, водород в метане окисленным, а углерод — восстановленным, поскольку электроотрицательность углерода несколько выше, чем у водорода (соответственно 2,5 и 2,1). [c.252]

    Н. Г. Трибунский. Демонстрационные опыты с галогенами без вытяжного шкафа. Химия в школе , 1971, К 1, стр. 77—78. [c.88]

    Общий обзор кислородных соединений галогенов. Галогены непосредственно с кислородом не соединяются, однако их оксиды, кислородные кислоты и многочисленные производные этих соединений занимают видное место в химии и имеют весьма важное значение как в теоретическом, так и в практическом отношении. [c.148]

    Химическое строение молекулы азота с позиций МВС и ММО характеризуется исключительной прочностью, несравнимой ни с какими другими двухатомными молекулами. Особая устойчивость молекулярного азота во многом определяет химию этого элемента. И кратность, и порядок связи в молекуле азота равны трем . Кроме того, на разрыхляюш,их молекулярных орбиталях нет ни одного электрона. Все это является причиной очень большой величины энтальпии диссоциации молекул азота и высокой их термической устойчивости. Поэтому азот не горит и не поддерживает горения других веществ. Напротив, он сам в молекулярном виде является конечным продуктом окисления многих азотсодержащих веществ. При комнатной температуре азот реагирует лишь с литием с образованием нитрида лития LigN. В условиях повышенных температур он взаимодействует с другими активными металлами также с образованием нитридов. Образующийся при электрических разрядах атомарный азот уже при обычных условиях взаимодействует с серой, фосфором, ртутью. С галогенами азот непосредственно не соединяется. Химическая активность азота резко повышается в условиях высоких температур (2500—3000 °С), тлеющего и искрового электрического разряда и в присутствии катализаторов. Так, при повышенных температурах и давлениях и в присутствии катализаторов азот непосредственно соединяется с водородом, кислородом, углеродом и другими элементами. [c.248]


    Учение о периодичности в сочетании с учением о строении вещества позволило раскрыть содержание и определить характер причинно-следственных связей в химии зависимость свойств веществ от их состава и строения. Одним из важнейших свойств элементов является химическая активность. Как известно, наибольшей химической активностью обладают щелочные металлы, галогены и кислород. Положение указанных элементов в системе и строение их атомов позволило установить причины их высокой активности, а также содержание самого понятия. В данном случае под активностью подразумевается восстановительная активность щелочных металлов как простых веществ и окислительная активность двухатомных молекул галогенов, кислорода. [c.44]

    Это не вызывает удивления, поскольку триплетные карбены сами являются свободными радикалами. В такие реакции могут вступать и синглетные карбены, но они способны отрывать только атомы галогенов, но не водород [199]. Известно много других реакций карбенов, но они не имеют большого значения для химии этого класса соединений. [c.255]

    Диспропорционирование — это особый случай окислительно-восстановительной реакции, в ходе которой происходит переход одного и того же вещества средней степени окисления на более низкую и более высокую степень окисления. Вещество как бы само себя окисляет и восстанавливает. Это явление называют также редокс-амфотерностью. Реакции такого типа часто встречаются в химии галогенов. Например, при растворенг1И иода в растворе едкого натра молекулы иода сначала диспро-порционируют на гипоиодид- и иодид-ионы. Нестабильный ги-поиодид быстро диспропорционирует с образованием иодида и иодата  [c.418]

    Самая высокая окжутительная способность свободных галогенов в сравнении с другими свободными элементами, самая малая устойчивость кислородных соединений галогенов в сравнении с другими кислородными соединениями, самая большая сила галогеноводородных кислот среди всех бескислородны кислот, самый ионный характер связи в солях этих кислот, — все эти и многие другие важнейшие особенности химии галогенов объяс- няются строением электронных оболочек атомов галогенов и являются как бы развернутой характеристикой понятия самые типичные неметаллы . [c.61]

    В разд. 10.2.7 и 10.2.8 рассмотрены только соединения типа КРХг и КгРХ, где К — алкил или арил, а X — галоген. Химия галогенфосфоранов рассмотрена в гл. 10.4, а другие типы соединений, содержащих связи Р—X — в соответствующих разделах гл. 10.3 и 10.5, посвященных кислотам фосфора. [c.655]

    Германий относится к числу семиметаллов (металлоидов), а олово и свинец-к металлам. В соединениях с элементами группы кислорода и галогенами углерод и кремний проявляют степень окисления + 4. Например, углерод находится в состоянии окисления + 4 в ССЦ, Oj и Sj. Германий и олово имеют степени окисления +4 и + 2, а химия свинца полностью относится к его состоянию окисления + 2. [c.455]

    Для органической химии очень важной характеристикой является распределение электронной плотности в молекуле. От этого зависит прочность и реакционная способность ковалентной связи, и богатые электронами атомы галогенов должны влиять на перераспределение электронов в насьш11,енных, ненасьш енных и ароматических углеводородах, [c.184]

    Научные интересы преимущественно были сосредоточены в области теоретической органической химии и органического синтеза. Высказал (1857) мысль о валентности как о цело.м числе единиц сродства, которым обладает атом. Предложил (1865) циклическую структурную формулу бензола, распространив тем самым теорию хи.мического строения Бутлерова на ароматические соединения. Экспериментальные работы Кекуле тесно связаны с его теоретическими исследованиями. С целью проверки гипотезы о равноценности всех шести атомов водорода в бензоле получил его галоген-, нитро-, а.мино-и карбоксипроизводные. [c.346]

    Элементы второго периода в валентном состоянии не имеюг -орбиталей, и поэтому их химическое поведение существенна отличается от поведения более тяжелых гомологов в той же группе. По этой причине химия остальных галогенов рассматривается отдельно. [c.494]

    Сушественные различия в химии галогенов обусловлены различиями в строении предпоследнего электронного слоя их атомов (скачок электроотрицательности, кислородные соединения). В предвнешнем слое у атома хлора содержится 8, а у атомов брома и иода—18 электронов. Для образования связей атомы этих элементов могут использовать также свободные -орбитали. [c.494]

    К элементам группы 7А, называемым галогенами, относятся фтор, хлор, бром, иод и астат. Эти элементы сыграли важную роль в развитии химии как науки. Хлор был впервые выделен щведским химиком Карлом Вильгельмом Шееле в 1774 г., но лищь в 1810 г. английский химик Гемфри Дэви установил, что хлор является элементом. Затем в 1811 г. последовало открытие иода, а бром был открыт в 1825 г. Соединения фтора были известны уже давно, но только в 1886 г. французский химик Анри Муас-сан сумел выделить этот чрезвычайно реакционноспособный элемент в свободном виде. [c.288]

    О природе связи углерод — галоген прочитайте в учебнике (Перекалин В, В,, Зонис С. А. Органическая химия. М., 1982), [c.229]

    Учебное пособие представляет собой сборник упражнений полу-программированного типа по развитию нйвыков в прогнозировании свойств сложных по строению органических соединений, представляющих, как правило, интерес с точки зрения жизнедеятельности растительных и животных организмов, медицины или народного хозяйства. Упражнения сгруппированы по классам органических соединений в соответствии с программой общего курса органической химии, составленной по функциональным группам. Всего 16 тем шесть типов углеводородов (гл. 1-У1), галоген- и кислородсодержащие соединения (гл. УП-ХШ), азотсодержащие органические соединения (гл.Х1У-ХУ) и гетероциклы (гл. ХУ1). Упражнения оформлены в виде тестовых карточек, состоящих из трех частей (информативная, вопросы и набор выборочных ответов). Они могут быть использованы как на стадии обучения и учения (лекции, семинарские занятия, самостоятельная работа), так и дош проверки знаний студентов (контрольные работы, экзамены). [c.2]

    При комнатной температуре нд металлы подгруппы УБ не действуют хими ческие реагенты, ода и воздух при нагревании они взаимодействуют кислородом (с образованием ЭгОз), с галогенами (УР2, УСЦ, УВп, VI)), серой, азотом, углеродом и другими веществами. В порошкообразном состоя ним V, Nb и Та реагируют при высокой температуре с водяным паром с выде лением Н . [c.499]

    В книгах по химии нередко формулируется правило галоген с большей относительной атомной массой вытесняет из кислородных соединений галоген с меньшей относительной атом ной массой. Приведите примеры г, 1тветст уюп их реакций и ука жите условия их проведения. Составьте подобное правило для водородных соединений галогенов. [c.115]

    Атом хлора обладает большим числом электронов, чем атом фтора, большим радиусом и вакантными d-орбиталями. Все эти особенности накладывают определенный отпечаток на химию хлора, хотя в общем сходство между хлором н фтором выражено более отчетливо, чем между хлором и бромом. Как и у других галогенов, молекула хлора состоит из двух атомов. Для возбуждения атома хлора и перевода одного из р-электронов в d-состояние с тем же главным квантовым числом 3 Зр —>-Зр М нужна энергия в 860,9 кДж/моль. Таким образом, в отличие от фтора атом хлора может действовать как атом с тремя неспаренными электронами. В таком состоянии атом хлора находится, например, в ковалентном соединении с фтором IF3. [c.195]

    Галогенопроизводные отличаются большой реакцио1шой способностью. Они стоят как бы на оживленном перекрестке синтетической органической химии к ним и от них ведет много путей. Поэтому галогенопроизводные часто используют для синтезов не только в лабораториях, но н в промышленности. Для промышленных целей имеют значение главным образом хлорпроизводные, поскольку хлор — самый дешевый из галогенов. В мире для производства хлорорганических соединений расходуются десятки мил- [c.145]

    Для химии элементов УПА группы характерны разнообразие и широкий диапазон свойств простых веществ, их высокая реакционная способность, образование соединений от типично ионных (с элементами 1А—ПА групп) до типично ковалентных (ССЦ, 5Рб и т. п.), образование сильных кислот с водородом (кроме Н2р2), непрочность соединений с высокоотрицательными элементами (известны лишь соединения с кислородом, серой и друг с другом (ОР2, 1С1з)). Кислородные соединения галогенов являются сильными окислителями. В рядах [c.423]

    Существенной особенностью химии кремния сравнительно с химией углерода является возможность вовлечения в связеобразова-ние 3d-орбиталей. Это приводит к увеличению валентных возможностей атома кремния. Теоретически максимальная ковалентность кремния может быть равна 9 против 4 у углерода. На практике, помимо валентности 4, встречаются шести ковалентные производные, в которых атом кремния находится в sp ii -гибридном состоянии. Однако для кремния наиболее характерны структуры, где атомы кремния имеют к. ч. 4 и находятся в 5 о= -гибридном состоянии. Производные с sp- и sp -гибридизацией атома кремния редки и, как правило, мало устойчивы. Кремний в отличие от углерода менег склонен образовывать кратные связи. Для кремния наиболее характерно дополнительное Лр -связывание в отличие от Пр.р-взаимодействия для углерода. Таким образом, в случае кремния л-связывание часто возникает за счет участия вакантных 3ii-op6H-талей и неподеленных электронных пар атомов партнеров. Так обстоит дело в соединениях кремния с азотом, кислородом, фтором и хлором. Прочность связей кремния с кислородом, азотом и галогенами из-за дополнительного л-связывания выше, чем соответствующих связей для углерода. Наоборот, связь атома углерода, например, с водородом прочнее, чем у кремния, так как водород не располагает неподеленной электронной парой. Ниже для сравнения [c.198]


Смотреть страницы где упоминается термин Галогены химия: [c.552]    [c.33]    [c.134]    [c.125]    [c.110]    [c.130]    [c.178]    [c.6]    [c.46]    [c.48]    [c.115]    [c.7]    [c.373]    [c.2]   
Общая химия (1964) -- [ c.218 ]




ПОИСК







© 2025 chem21.info Реклама на сайте