Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы свободные

    Какие функции могут выполнять в окислительно-восстановительных реакциях свободные металлы Свободные неметаллы Элементарные ионы металлов Элементарные ионы неметаллов  [c.92]

    В решениях ХХИ съезда КПСС, касающихся металлургии, особо отмечаются важнейшие народнохозяйственные задачи получения металлов высокой чистоты и комплексной переработки руд и полупродуктов с целью максимального использования их составляющих — рассеянных и редких элементов. Ценность электрохимических методов заключается в том, что в процессе электролиза при точном соблюдении заданного электродного потенциала при прочих равных условиях удается выделять нужный металл, свободным от примесей других металлов. Кроме того, можно селективно получить ряд металлов сообразно потенциалам его выделения. Поэтому методы электролитического осаждения металлов широко используются в гидрометаллургии. [c.11]


    Иногда величину электродного потенциала объясняют различным содержанием в металлах свободных электронов и различной способностью посылать ионы в раствор. Чем больше эта способность, тем более отрицателен электродный потенциал. Стандартный потенциал цинка отрицателен, а меди положителен, тем не менее медь обладает лучшей электропроводимостью, чем цинк. Как это объяснить  [c.258]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]


    Если свободная энергия ионов металла в металле больше, чем в растворе, например цинка, находящегося в растворе сернокислого цинка, то ионы металла перейдут из металла в раствор и образуют положительную обкладку двойного электрического слоя (рис. 3, а). Отрицательная обкладка такого двойного электрического слоя образуется оставшимися вблизи поверхности металла свободными электронами. Силовое поле двойного слоя, образующегося на границе раздела фаз, препятствует такому переходу, оно отталкивает ионы металла в направлении к металлу. Таким образом, когда ионы металла переходят из металла в раствор, они должны совершать работу против сил поля, создаваемого двойным электрическим слоем. Эта работа, энергия для которой черпается из разности свободных энергий, тем больше, чем больше разность потенциалов двойного слоя. Переход ионов может продолжаться до тех пор, пока разность потенциалов в двойном слое не достигнет той величины, которая соответствует разности между свободными энергиями ионов металла в металле и в растворе. Затем устанавливается равновесие. Этому состоянию соответствует равновесный электродный потенциал. [c.32]

    При образовании комплексных ионов (см. гл. XI) молекулы NHз предоставляют неподеленные электроны, а ионы металлов — свободные орбитали. Так, ион предоставляет одну 5 - и одну [c.54]

    Контактное взаимодействие Ферми подробно рассматривалось в гл. 9 и 12. Плотность неспаренного спина ощущается на исследуемом ядре за счет прямого подмешивания х-орбиталей к МО, на которой находится неспаренный электрон, и за счет спин-поляризации заполненных внутренних х-орбиталей под действием плотности неспаренных электронов на -орбиталях. Если 45-орбиталь металла свободна, то она может подмешиваться к -разрыхляющей орбитали, представляющей собой главным образом орбиталь металла если на этой -орбитали находится неспаренный электрон, то он частично занимает 4х-орбиталь металла. [c.224]

    Было показано, что обратимая адсорбция водорода на металлах представляет собой молекулярную хемосорбцию, причем молекула хемосорбированного водорода является положительным концом диполя Ме — Нг (условно Ме — На ). Адсорбция водорода при —195 °С протекает крайне быстро и сопровождается распадом его молекул на атомы. Однако уже при этой температуре происходит рекомбинация хемосорбированных атомов водорода, и на части поверхностных атомов металла, свободной от атомарного водорода, происходит обратимая равновесная хемосорбция его молекул. Взаимодействие между электронами металла и адсорбированным водородом сопровождается поглощением теплоты [30 . [c.19]

    Скорость равномерной коррозии выражают в разных единицах, чаще всего в миллиметрах в год (мм/год) или в граммах на квадратный метр за сутки [г/(м .сут)1 . Эти единицы характеризуют глубину разрушения или потерю массы металла, причем рассматривается поверхность металла, свободная от продуктов коррозии. Например, сталь в морской воде корродирует с приблизительно постоянной скоростью близкой к 0,13 мм/год, т. е. 2,5 г/(м .сут). Это усредненное значение обычно в случае равномерной коррозии в начальный период скорость повышена [9], поэтому данные о скоростях коррозии должны сопровождаться сведениями о длительности испытаний. [c.26]

    Процессы, связанные с переходом электронов полупроводниковый катализ). В окислах металлов и в самих металлах свободные электроны способны к латеральным смещениям и к переходам с одних уровней на другие в пределах нескольких атомных расстояний, что влечет за собой проявление активности катализаторов и протекание реакций по типу электронных механизмов. К таким процессам С. 3. Рогинский относит окисления, гидрирования и дегидрирования. [c.171]

    У поверхности металла свободные электроны являются носителями отрицательного заряда. У поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающего к поверхности металла. Причина возникновения скачка потенциалов - переход катионов из металла в электролит (рис. 3.1, а) или из электролита на металл (рис. 3.1, б) (так называемый электродный потенциал металла). [c.28]

    На рис. 1.Ь а,б, в показаны орбитали в молекуле СО (штриховкой отмечены орбитали, занятые электронами). Аналогичные МО имеются в ионе N Частицы СО и СЫ" изоэлектронны они содержат одинаковое число электронов и отличаются лишь зарядом ядра одного из атомов (для кислорода г - 8, для азота г-7). В этих частицах МО, занятые неподеленными парами электронов, близки к р-гибридным АО. Они образуют (Г-связи с атомами металла. Свободные разрыхляющие МО в СЫ или СО дают п-связи с ( х,, (1у1 и с/.г-орбиталями атома металла. В результате лиганд весьма прочно связывается с центральным атомом. Схема образования связей показана нл рис. 1.62г. Связи металл-лиганд в комплексных цианидах и карбонилах (соединения металлов с СО) очень прочны, поскольку в таких соединениях орбиталь становится связывающей, уровень ее энергии снижается и разность энергий Д увеличивается. Это объясняет положение СЫ в спектрохимическом ряду. [c.138]


    Необходимое условие для наблюдения спектров ЭПР — наличие п исследуемом веществе неспаренного электрона. Этому условию удовлетворяют ионы с частично заполненной электронной оболочкой (например, ионы переходных металлов), свободные радикалы, атомы с нечетным числом электронов, металлы и полупроводники. Мы ограничимся спектрами ЭПР переходных металлов в комплексных соединениях. [c.280]

    Кристаллы чистых металлов построены из одинаковых атомов, и химическая связь в них является ненасыщенной (см. 7). Поскольку энергия металлической связи достаточно велика, то кристаллы металлов обладают довольно высокими температурами плавления и малой летучестью. Отличительными свойствами кристаллов металлов является их высокие электро- и теплопроводность, а также гибкость и ковкость. Все перечисленные свойства связаны с присутствием в решетке металлов свободно перемещающихся электронов. [c.85]

    Специфические свойства металлов высокие электро- и теплопроводность вплоть до абсолютного нуля, универсальная связь между двумя указанными характеристиками и др. — определены наличием в металле свободных нелокализованных электронов, электронного газа. В первом приближении этот газ можно считать идеальным. Особенность электронного газа состоит в том, что он не подчиняется классической статистике Больцмана и должен быть описан квантовой статистикой, относящейся к частицам с полуцелым спином, фермионам. [c.177]

    Вы знаете, что электроны внешних энергетических уровней кристаллического металла, свободно перемещ,аясь по всему куску металла, принадлежат не отдельным атомам, а всей кристаллической решетке. Кристалл как бы состоит из заряженного. .. остова ионов металла в заряженной. .. электронной атмосфере объединившихся электронов. [c.92]

    В металлах валентная зона и зона проводимости перекрываются между собой, т. е. АЕ = 0. Это и обусловливает способность валентных электронов в металле свободно перемещаться по всему объему кристалла или двигаться направленно под влиянием внешнего электрического поля. Отсутствие запрещенной зоны у металлов объясняется тем, что в их кристаллах - и р-зоны перекрываются, а число валентных электронов мало по сравнению с числом вакантных орбиталей в валентной зоне. Например, [c.84]

    Между металлом, находящимся в щели, и металлом, свободно омываемым электролитом, возникают довольно мощные макроэлементы, в которых анодами служит металл, находящийся в щели (рис. 9). [c.11]

    При образовании комплексных ионов (см. стр. 206—208) молекулы ЫНз предоставляют неподеленные электронные облака связи, а ионы металлов — свободные орбитали. Так, ион Ag предоставляет одну 5з- и одну 5р-орбиталь, ионы — 4з- и три 4р-орбитали, а ион Со — 45-, три 4р- и две З -орбитали. Образующиеся комплексные ионы имеют следующие пространственные структуры  [c.67]

    Прежде чем рассмотреть все эти особенности анодного поведения металлов, обратимся к модельным представлениям, поясняющим переход ионов с поверхности металла в раствор. Многие данные свидетельствуют о том, что на поликристаллической поверхности металла, свободной от окисной пленки, анодное растворение локализуется на активных центрах, в местах, где сосредоточены атомы металла, наиболее слабо связанные со всеми остальными, занимающими нормальное положение в кристаллической решетке. По оценке Хора, число таких активных центров составляет 10 —на 1 см , т. е. колеблется от 10 до 10 от общего количества поверх ностных атомов. На рис. 31 схематически показаны недостроенные концевые ступеньки, которые занимают атомы металла, выполняющие функцию активных центров процесса растворения. Будучи слабее остальных связанными с кристаллической решеткой металла, они вместе с тем наиболее доступны для подхода молекул воды или анионов из раствора [c.105]

    Выводы предыдущего параграфа сохраняют свою законность лишь по отношению к металлам идеальной частоты. Свойства любой точки поверхности такого металла остаются совершенно одинаковыми. Поэтому вероятность протекания в любой точке каждого из всех возможных электрохимических. процессов одна и та же. Вполне очевидно, что такую поверхность практически удается получить лишь в чрезвычайно редких случаях — у металлов, свободных от посторонних примесей. Но и при таких условиях вследствие кристаллической структуры металлов различные грани кристаллитов, выходящие на поверхность, могут обладать различающимися свойствами. В свою очередь, это может привести к дифференциаций поверхности на участки с несколько пониженным или, напротив, повышенным значением потенциала. [c.130]

    Электрохимическая коррозия металлов протекает в растворах электролитов и влажных газах и сопровождается протеканием электрического тока. Переносчиком электричества в растворе служат ионы, присутствующие в нем вследствие диссоциации, а в металле —свободные электроны. [c.65]

    При погружении углеродистой стали в раствор электролита на поверхности располагаются участки, состоящие из перлита и феррита. Между раствором и ферритными участками устанавливается одна разность потенциалов, а между тем же раствором и перлитными участками — другая между участками возникает электрический ток. Носителями зарядов в растворе служат ионы электролита, а в металле — свободные электроны. Участок с более низким потенциалом растворяется, а к участку с более высоким потенциалом перемещаются электроны и на его поверхность протекают восстановительные реакции. Если коррозия протекает в кислом растворе, то на участке с более высоким потенциалом происходит восстановление положительных ионов водорода. [c.72]

    Эксперимент проводили на двутавровой, Н - образной насадках, уголковой и X - образной с отбойником. Исследуемые контактные устройства состояли из блоков общей высотой 800 мм, элементы которых выполнялись из листового металла. Свободное сечение для прохода фаз во всех насадках одинаково. Результаты эксперимента представлены на графике (рисунок). [c.104]

    Что асается меди железа, то их содержание в хроме зависит от чистоты исходного сырья и случайных попаданий с токоподводов и т. д. Электролитический хром, получаемый электролизом из растворов СгОз с применением свинцового анода, загрязнен свинцом (0,01—0,02%). Получение металла, свободного от этой примеси, возможно с применением платинового анода. [c.533]

    Многие практически важные электрохимические процессы (производство алюминия, магния, щелочных металлов, свободных галогенов, рафинирование металлов и др.) осуществляют в расплавах электролитов. Расплавы электролитов используют также в ядерной технике и в топливных элементах. Основными составными частями расплавленных электролитов являются ионы, на что указывает прежде всего высокая электропроводность расплавов. Поэтому расплавленные электролиты называют ионными жидкостями. Ионные жидкости можно разбить на два класса 1) расплавы солей и их смесей 2) расплавы окислов и их смесей. Этот класс ионных жидкостей приготавливают смещением окислов неметаллов (SiOj, [c.89]

    Нормальные галиды металлов образуются обычно в результате непосредственного окисления соответствующих элементарных металлов свободными галогенами. Эффективность этого процесса окисления зависит от восстановительной активности металлов, окислительной активности галогенов и характеризуется величиной теплоты образования получающегося галида. Поскольку из всех галидов теплота образования Кридов является наибольшей, эффективнее всего протекает окисление активных металлов фтором. [c.9]

    Гидроксисоединения можно рассматривать и как производные воды со всеми вытекающими отсюда следствиями. Атом водорода в гидроксиле можно заменить металлом с образованием алкоголята (подобно образованию гидроксида при замене атома водорода в воде на металл), свободные электронные пары придают гидроксисоединениям (как и воде) характер огио-ваний (впрочем, лишь по отношению к очень сильным кислотам) и нуклеофилов. [c.150]

    Теория электропроводности металлов успешно использует модель, основанную на представлении о существовании в металлах свободных электронов, т. е. электронов, не связанных с определенными атомами и движущихся по всему объему металла. Если в изолированном атоме все электроны прочно связаны, то в металле имеются как связанные, так и свободные электроны (к связанным можно отнести практически все электроны внутренних оболочек атома валентные электроны ведут себя как свободные). Металл представляют как совокупность положительно заряженных ионов, находянщхся в узлах кристаллической решетки, и свободно перемещающихся в металле электронов (электронный газ). Идея о существовании в металле электронного газа была высказана впервые Друде. [c.183]

    Типы коррозионных разрушений. При равномерном распределении коррозионных разрушений по -всей поверхности металла коррозию называют равномерной или обш,ей если же значительная часть поверхности металла свободна от коррозии и последняя -сосредоточена на отдельных участках, то ее называют местной. Наиболее часто встречающиеся в практике типы местной коррозии изображены на рис. 88. Наибольшую опайность представляют питтинговая (точечная) и межкристаллитная коррозии, вызывающие заметную потерю механических свойств при сравнительно небольшом количестве прокорродировавшего металла. [c.207]

    Многие переходные Переходные металлы. Во многих случаях гетероген-мета.плы с[)аботают ный катализ протекает с помощью переходных как гетерогенные металлов. Свободные /-орбитали этих металлов кага.1нзатг)]1 з1. . облегчают связывание их со многими веществами, и при этом образуются реакционноспособные интермедиаты. В производстве аммиака по Габеру катализатором служит смесь железа и ванадия  [c.346]

    Атом натрия на внешнем энергетическом уровне имеет четыре орбитали и один валентный электрон, который атом отдает очень легко. Все четыре орбитали и один электрон внешнего уровня атомы натрия в кристалле металла предоставляют на образование химической связи. Получается, что в кристалле натрия электронов значительно меньше, чем орбиталей. Это позволяет электронам в металле свободно перемещаться, переходя с одной орбитали на другую. Такие. иодвин<ные электроны называются обобществленными (как бы принадлежащими всем атомам одновременно) или электронным газом. Поэтому металл можно представить как структуру, состоящую из атомов металла, расположенных в узлах кристаллической решетки, которые удерживаются за счет обобществленных электронов. [c.55]

    Дуговой разряд по длине можно подразделить на три области среднюю—столб дуги, прикатодную и прианод-ную области В столбе дуги потенциал растет линейно по направлению от одного конца к другому в приэлект-родных областях, протяженность которых весьма мала (порядка 10 = см), он изменяется скачком. Между тем-эти приэлектродные области, в первую очередь прика-тодная, образуют те потоки заряженных частиц, которые в столбе дуги ионизируют газ. Под действием бомбардирующих катод ионов он разогревается и находящиеся в нем, как во всяком металле, свободные электроны получают такие скорости теплового движения, что оказываются в состоянии преодолеть потенциальный барьер у поверхности катода и ВЫЙТИ В дуговой промежуток, где они ускоряются электрическим полем и при столкновении с нейтральными частицами ионизируют их толчком. Такая термоэлектронная эмиссия требует высокой температуры катода (более 2000 К), поэтому она возможна лишь тогда, когда катод выполнен из тугоплавкого материала. Катод из менее тугоплавкого материала интенсивно испаряется, и электроны выходят из окружающего катод раскаленного облака пара. [c.182]

    Развитие эксперим. техники сделало возможным в ряде случаев относить скорость гетерогенно-каталитич. р-ции к единичному активному центру пов-сти. Применение сверхвысокого вакуума ( 10 Па) позволило получить атомарно чистые пов-сти металлов (свободные от адсорбиров. частиц), на к-рых все атомы (их число 10 м ) являются активными центрами. Число молекул, подвергающихся превращениям на одном активном центре в секунду, наз. числом оборотов р-ции t . Скорость р-ции связана с i соотношением  [c.537]

    В случае полупроводников (оксиды, сульфиды никеля, молибдена, вольфрама и некоторых других переходных металлов) свободные валентности (свободные электроны и электронные дырки) появляются вследствие неполной координированности атомов поверхности кристаллической решетки и в результате различных дефектов кристалла полупроводника. Например, узел кристалла, в котором отсутствует катион, ведет себя как отрицательный заряд, отталкивая электроны в ближайших узлах. В результате эти электроны могут быть вытеснены из валентной зоны в зону проводимости. Появление электронов (или дырок) в зоне проводимости может быть вызвано также присутствием в кристалле различных примесей, обладающих электро-иодонорными (или электроноакцепторными) свойствами, а так- [c.329]

    Наличие в металлах свободных электронов обусловливает их специфические физические свойства электропроводность, теплопроводность, непрозрачность и блеск (отражательная способность). Электроны, свободно передвигаясь в металле, не могут выйти наружу из-за потенциального барьера. Для преодоления электроном этого барьера необходимо затратить работу. Если при этом затрачивается лучистая энергия, то эффект отрыва электрона вызывает так называемый фотоэлектрический эффект. Аналогичный эффект наблюдается и у го-меополярных соединений. Вырванный из молекулярной орбиты электрон, оставаясь внутри кристалла, обусловливает у последнего металлическую проводимость (внутренний фотоэлектрический эффект). В нормальных же условиях (без облучения) такие соединения не являются проводниками электрического тока ни в кристаллическом, ни в расплавленном состояниях. [c.244]


Смотреть страницы где упоминается термин Металлы свободные: [c.97]    [c.120]    [c.48]    [c.122]    [c.98]    [c.144]    [c.136]    [c.277]    [c.120]    [c.89]    [c.197]    [c.33]   
Капельный анализ (1951) -- [ c.163 ]

Аналитическая химия (1965) -- [ c.23 , c.167 , c.169 ]




ПОИСК







© 2025 chem21.info Реклама на сайте