Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические периодическая систем

    Понятие валентности и степени окисления. Определение их возможных значений по положению химического элемента в Периодической системе [c.71]

    МОЗЛИ ЗАКОН связывает частоту спектральных линий рентгеновского излучения с порядковым номером химического элемента. Согласно М. з. квадратный корень из частоты соответствующей характеристической линии представляет собой линейную функцию от порядкового номера. Закон установлен английским ученым Г. Мозли в 1913 г. На основе М. з. можно экспериментальным путем определять атомный номер элемента, что было использовано для подтверждения правильности расположения элементов в периодической системе элементов Д. И. Менделеева. [c.163]


    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]

    Некоторые закономерности. Рассмотрим теперь на сравнительно простых примерах связь вида диаграммы плавкости с положением элементов в периодической системе. Химически подобные элементы (соединения) дают и аналогичные диаграммы. В частности, элементы одной подгруппы или стоящие рядом в периоде с почти одинаковыми размерами атомов обычно образуют твердые растворы. Закономерность Б изменении типа диаграмм плавкости на примере щелочных металлов показана на рис. 73. Из рис. 73 видно, что отличие свойств от других элементов подгруппы приводит к тому, что они взаимно нерастворимы ни в твердом, ни в жидком состоянии линия ликвидуса представляет собой горизонталь при температуре плавления НЬ, линия солидуса — горизонталь при температуре плавления Ы. [c.224]


    Аналогия в химико-аналитических свойствах элементов, занимающих соседние клетки в периодической системе, открывает широкие возможности для прогнозирования и разработки новых методов анализа. Было известно, например, что Мо (V) дает цветную реакцию с тиоцианатом. Можно было ожидать, что N6 (V), как соседний элемент по периодической системе, также будет давать соединение с тиоцианатом. Эксперимент оправдал эти ожидания и для ниобия был также разработан тиоцианатный метод фотометрического определения, широко используемый в настоящее время. Аналогичные примеры известны для методов определения тантала и протактиния и для многих других сочетаний элементов. Аналогия свойств, соответствующая периодическому закону, проявляется не только непосредственно в химических реакциях кислотно-основного взаимодействия, комплексообразования, осаждения и т.д., но и во многих других процессах, имеющих химико-аналитическое значение, — их экстрагируемо- [c.15]

    Зависимость между свойством, которое лежит в основе аналитического метода, и положением элемента в периодической системе Д. И. Менделеева имеет и другие многочисленные проявления. Хотя периодическая система составлена на основе свойств нейтральных атомов, она оказывается эффективной и в сложных системах, таких, как многоатомные и комплексные ионы в растворе и в газе, координационные соединения в различных агрегатных состояниях и т. д. Однако связь аналитических свойств и периодического закона в таких системах имеет более сложный характер, иногда она маскируется одновременным действием различных физических факторов, таких, как температура, среда и др., химическим окружением и т. д. Нельзя не учитывать также, что многие элементы (5, Ы, Мп, С1, Вг и др.) образуют в растворе ионы разл ичного состава, что нередко затрудняет установление связи аналитических свойств с периодическим законом. Тем не менее периодический закон остается незыблемой основой для [c.16]

    О периодичности изменения химической активности простых веществ свидетельствует характер изменения АЯ и АО/ соответствующих однотипных соединений с увеличением порядкового номера элемента. Об этом же свидетельствует рис. 128, на котором показана зависимость значений стандартного электродного потенциала простых веществ в водном растворе от порядкового номера элемента в периодической системе. [c.238]

    Приводимые в этом разделе химические символы обозначают не атомы элементов, а их ядра. Нижний индекс указывает заряд ядра, численно совпадающий с но.мером элемента в периодической системе элементов, верхний — массовое число А, представляющее собой сумму 2 + Л/, где 2 — число протонов (р) в ядре, определяющее заряд ядра, а М-—число нейтронов (п) в ядре. Ядра всех атомов данного элемента имеют одинаковый заряд, т. е. содержат одно и то же число протонов число нейтронов может быть различным. [c.47]

    А. Н. Вяльцев с соавторами [5, с. 185] отмечают "Окончательная расшифровка структуры радиоактивных рядов по сути дела означала создание первой систематики изотопов. Радиоактивные ряды обладают более значительными прогностическими возможностями в области превращения химических элементов, чем Периодическая система". Соглашаясь с ними в главном, хотелось бы уточнить, что ряды обладают более значительными прогностическими возможностями в области взаимопревращения атомов вообще, а не только химических элементов. [c.101]

    Заряд ядра атома химического элемента равен порядковому номеру этого элемента в Периодической системе. Вследствие электронейтральности атома, общее число электронов в атоме равно заряду ядра, т. е. также совпадает с порядковым номером. [c.24]

    Например, в настоящее время установлено, что атомные массы возрастают в такой последовательности Ре, N1, Со, Си в четвертом периоде (ср. с 4-й строкой рис. 7-1), Яи, КЬ, Рс1, Ag в пятом периоде (ср. с 6-й строкой рис. 7-1) и 08, 1г, Р1, Аи в шестом периоде (ср. с 10-й строкой рис. 7-1). Однако N1 по своим свойствам больше напоминает Рё и Р1, чем Со. Кроме того, оказалось, что Те имеет большую атомную массу, чем I, но I несомненно сходен по химическим свойствам с С1 и Вг, а Те сходен с 8 и 8е. Наконец, после открытия благородных газов обнаружилось, что Аг имеет большую атомную массу, чем К, тогда как все остальные благородные газы имеют меньшие атомные массы, чем ближайшие к ним щелочные металлы. Совершенно очевидно, что во всех трех отмеченных случаях нельзя руководствоваться атомными массами при размещении элементов в периодической системе. Поэтому всем элементам периодической системы были приписаны порядковые номера от 1 до 92 (в наше время до 105). (Порядковые номера элементов приблизительно соответствуют возрастанию их атомных масс.) Если расположить элементы в периодической таблице в последовательности возрастания их порядковых номеров, химически сходные элементы образуют в ней вертикальные колонки (семейства или группы). [c.311]


    Известно, что многие физико-химические свойства вещества, в том числе и важные для катализа, определяются в конечном счете электронной структурой входящих в его состав атомов (ионов). В то же время электронная структура атома определяется положением элемента в Периодической системе элементов. Таким образом, сопоставление каталитической активности металлов с их положением в Периодической системе элементов до определенной степени позволяет, с одной стороны, предсказывать каталитические свойства еще не изученных металлов (и их соединений), с другой — судить о механизме элементарных актов каталитических и электрохимических процессов, протекающих на поверхности этих металлов. [c.33]

    Таким образом, строгая периодичность расположения элементов в периодической системе химических элементов Д. И. Менделеева полностью объясняется последовательным характером заполнения [c.29]

    В зависимости от положения элемента в периодической системе атом водорода в соединении с ним приобретает либо отрицательный, либо положительный заряд (табл. В.19). Величина и направление дипольного момента связи Н—X в значительной степени определяют физические и химические свойства гидридов. [c.461]

    Положение химического элемента в периодической системе является его важнейшей характеристикой, поскольку дает необходимую информацию об электронной структуре его атомов и прежде всего о строении его внешних валентных электронных уровней. Это позволяет судить о валентных возможностях химического элемента и важнейших формах его химических соединений. Зная характер изменения химических свойств в периодах и группах периодической системы, а также имея представление о свойствах соседей рассматриваемого элемента по группе и периоду, можно еще более полно описать основные аспекты его поведения. [c.23]

    В работе [2] проводилось систематическое исследование величины изомерного сдвига для систем Ag—8п и Ли—Зп. На рис. XI.3 представлены результаты измерения изомерных сдвигов для сплавов этих систем, а также зависимость б (с) для систем Си—Зп [3] и Рс1—Зп [4]. Наблюдается линейная зависимость б (с) для составов интерметаллических соединений, которые оказываются размещенными на параллельных прямых разного наклона. Обращает на себя внимание, что изомерные сдвиги для системы Ли—Зп оказались лежащими между прямыми изомерных сдвигов систем Си—Зп и А —Зп, что не отвечает порядку расположения элементов в периодической системе. Этот факт был объяснен химическим [c.202]

    Место элемента в периодической системе, положение элемента в периоде и группе определяется зарядом (2) и структурой ядра, спецификой электронного строения, совокупностью индивидуальных и общих химических и физико-химических свойств атомов элементов. [c.76]

    Изменение физико-химических свойств элементов в периодической системе Д. И. Менделеева [c.84]

    Для металлов характерно образование сплавов (см. 1.7, 5.6), специфика которых обусловлена местом элементов в периодической системе. Для атомов.и /-элементов следует учитывать комплекс их особых свойств (см. 3.10, 4.3—4.5). При образовании сплавов металлов проявляется металлическая связь и происходит кристаллизация вещества. Фазы, из которых состоят сплавы, могут быть твердыми растворами, химическими соединениями и системами с образованием эвтектики (см. 1.7). [c.134]

    Рассматривая природу химической связи в кристаллических решетках сложных веществ, следует учитывать, что только ковалентные или только ионные (однотипные — чистые ) связи и решетки маловероятны, определенная составляющая доли ионности или ковалентности неизбежна. Величина ее будет определяться свойствами компонентов, местом атомов элементов в периодической системе. [c.136]

    Кратко рассмотрим связь типа диаграммы состояния с положением элементов в периодической системе элементов. Многие химически подобные вещества часто имеют аналогичные диаграммы. Элементные вещества одной подгруппы или стоящие рядом в периоде с почти одинаковыми размерами атомов часто образуют твердые растворы. Закономерность в изменении типа диаграмм состояния на примере щелочных металлов показана на рис. [c.313]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Развитие химии в период творческой деятельности Д. И. Менделеева привело ученого к выводу, что свойства химических элементов определяются их атомной массой, т. е. величиной, характеризующей относительную массу атома. Поэтому в основу систематики элементов он положил именно атомный вес, как фактор, от которого зависят физические и химические свойства элементов. Д. И. Менделеев сформулировал периодический закон так свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов . Вслед за открытием закона Д. И. Менделеев опубликовал периодическую систему элементов, в которой вертикальные ряды сходных элементов назвал группами, а горизонтальные ряды, в пределах которых закономерно изменяются свойства элементов от типичного металла до типичного неметалла,— периодами. Современная периодическая система химических элементов Д. И. Менделеева состоит из семи периодов и восьми групп и содержит 105 элементов. Порядковый номер элемента в периодической системе не только определяет его положение в таблице, но и отражает важнейшее свойство атомов — величину заряда их ядер. Поэтому периодический закон Д. И. Менделеева в настоящее время формулируется так свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядер атомов элементов. [c.43]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Под каждым элементом второго периода (перечислите эти элементы) в Периодической системе находятся их химические аналоги. Каждая такая вертикальная последовательность элементов называется А-группой. Сколько А-групп в Периодической системе Что роднит элементы одной и той же А-группы с точки зрения строения атома  [c.49]

    Вопрос о природе (строении) актиЕлых центров находится в стадии изучения и является предметом научных дискуссий. Вследствие этого единой теории действия, а поэтому и подбора катализаторов не существует. Можно лишь говорить об общих соображениях. Таковыми являются 1) катализатор должен быть способен к химическому взаимодействию хотя бы с одним реагентом 2) изменение энергии Гиббса взаимодействия катализатора с реагентами должно быть менее отрицательным, чем его изменение в катализируемой реакции. Однако в последние годы достигнуты большие успехи в представлениях о механизме катализа, позволившие выдвинуть некоторые общие принцигй, выбора катализаторов для различных типов реакций. Так, во многих случаях определяющим фактором в подборе катализаторов является положение элементов в периодической системе Д. И. Менделеева. На рис. 45 представлены результаты изучения каталитической активности металлов V и VI периодов в реакции разложения аммиака. Налицо периодичность изменения каталитических свойств с максимумами активности у железа и его ан алогов — рутения и осмия. [c.137]

    Как Вам известно, различают простые и сложные вещества. Приведите определения этих видов веществ. Почему число элементов в Периодической системе значительно меньше, чем число существующих- простых веществ Все ли простые вещества присутствуют в литосфере, гидросфере и атмосфере Земли Различаются ли с химической точки зрения следующие простые вещества а) орто- и параводород, б) твердая и газообразная сера, в) протий, дейтерий и тритий, г) серое и белое олово Можно ли все простые вещества считать химическими соединениями Дайте определение понятию химическое соединение и укажите природу сил, которыми связаны атомы и (или) молекулы в твердых простых веществах а) аргон, б) литий, [c.150]

    Принцип химической аналогии, использованный Менделеевым как основной ориентир при решении сложных вопросов размещения элементов в периодической системе, также диктует отнесение РЗЭ к главной подгруппе [3]. Как мы увидим ниже, кислотно-основные свойства закономерно изменяются с усилением основности по ряду А1<5с< <Ьа, тогда как в ряду А1>0а<1п<Т1 минимальная основность принадлежит галлию. Последнее также говорит о большей обоснованности отнесения элементов подгруппы галлия к побочной, а подгруппы скандия — к главной подгруппе П1 группы периодической системы. [c.50]

    Химический характер галогенных соединений зависит от места элемента в периодической системе и связан с изменением валентности, радиусов атомов, а так как последние изменяются периодически, то и изменение характера галогенных соединений претерпевает периодическое изменение. [c.100]

    Ныне одной из важнейших проблем в учении о химических элементах и периодической системе является проблема 104 элемента, синтез которого недавно был осуществлен, но химические свойства еще не изучены. Этот элемент по структуре электронной оболочки должен относиться к с1-эле-ментам и являться аналогом 72-го элемента гафния. Если последнее будет доказано, то актиноидная гипотеза Сиборга получит блестящее подтверждение и окончательно снимет с повестки дня проблему актиноидов. [c.290]

    Промежуточные соединения. Как указывалось выше, ряд затруднений при объяснении явлений гетерогенного катализа с точки зрения коллективных свойств электронов твердого тела, а также успехи в идентификации поверхностных адсорбированных соединений привели к возрождению чисто химических концепций в теории катализа, в обш,ем аналогичных первоначальной теории промежуточных соединений. Особое значение приобретают при этом индивидуальные свойства атомов и ионов в твердом теле, т. е. свойства, опредоляемые положением элемента в периодической системе элементов. Соответственно, как и в обш,ей теории химических реакций в.елика роль энергетических параметров самого превраш,ения.  [c.30]

    Г. Б. Бокий отметил, что затруднения, связанные с установлением периодических зависимостей свойств соединений от положения элемента в периодической системе, значительно уменьшаются, если сравнивать свойства кристаллических форм простых веществ, т. е. соединений элемента с самим собой . Действительно, все многообразие типов структур в этом случае удается свести к шести основным типам упаковки. Типичные металлы кристаллизуются в кубической центрированной, кубической (плотнейшей), гексагональной. Координационное число для кубической центрированной упаковки равно 8, а для гексагональной и плотнейшей кубической—12. Большое значение координационного числа обусловлено отсутствием направленности химической связи в кристаллах металлов и, соответственно, стремлением атомов (ионов) металла окружить себя максимальным числом соседей . Следующие три типа решеток менее четко определены — это молекулярные решетки, например решетки твердых кислорода и азота, решетки с координационным числом К=8—N и, наконец, все прочие структуры. [c.275]

    Химические свойства нитридов зависят, конечно, от положения элемента в периодической системе нитриды щелочных и щелочноземельных металлов характеризуются основными свойствами, нитриды алюминия проявляют признаки амфотерности, а нитриды неметаллов — серы, фосфора — имеют кислотный характер. Амфотерные и кислые нитриды способны реагировать с основными нитридами, образуя смешанные нитриды  [c.293]

    Объясните физический смысл порядкового номера химических элементов в периодической системе. [c.31]

    Научные труды относятся преимущественно к общей химии, а также физике, химической технологии, экономике, сельскому хозяйству, метрологии, географии. Исследовал (1854—1856) явление изоморфизма, раскрывающие отношения между кристаллической формой и химическим составом соединений, а также зависимость свойств элементов от их атомных объемов. Автор первого русского учебника Органическая химия (1861). Работая над трудом Основы химии , открыл (1869) один из фундаментальных законов природы — периодический закон химических элементов. Развил (1869—1871) идеи периодичности, ввел понятие о месте элемента в периодической системе как совокупности его свойств в сопоставлении со свойствами других элементов. [c.30]

    Выше неоднократно отмечалась связь различных свойств веществ с положением элементов в периодической системе Д. И. Менделеева (см. стр. 25 сл., 39 сл., 52, 54 сл., 65сл., 96, 126, 148 сл., 175, 205, 224 сл.). Здесь мы вкратце рассмотрим этот вопрос на примере одной из важнейших характеристик вещества — их химическом сродстве. [c.258]

    Все генетические ряды начинают счет с нулевого номера, проходящего через начало координат системы. Номера последующих рядов считываются с оси А в точке пересечения с ней генетического ряда при его продолжении. Исключения представляют изопротонные ряды, которые располагаются параллельно оси А. Их номер читается на оси е (р" ) и равен номеру химического элемента в Периодической системе. Это очень важный факт. Ибо бифункциональность оси абсцисс является тем перекидным мостиком, который связывает системы двух уровней — Систему атомов и Систему химических элементов. [c.113]

    В свете этих, более широких закономерностей, легко понять кажущееся противоречие между номером химического элемента в Периодической системе (под № 1 идет водород) и номером вида атомов (изопротонных рядов), где водород идет под № 3. Эта разница объясняется тем, что счет идет по двум различным, закономерным рядам, в двух разноуровневых системах. [c.180]

    Эта тенденция также ослш евагт при увеличении номера периода. Электроотрицательности у лития и у бериллия (второй период) отличаются сильнее, чем у натрия и магния (третий период). Электроотрицательности у фтора и у хлора (второй и третий периоды) отличаются сильнее, чем у хлора и у брома (третий и четвертый периоды). Следует отметить, чю атомы инертных газов имеют полностью заполненный валентный з ровень, поэтому они не проявляют тенденции оттягивать на себя электроны. Таким образом, сказанное вьипе относится к элементам групп с 1 по 7, но не относится к элементам восьмой группы. Если теперь посмотреть внимательно на расположение элементов в Периодической системе, то станет ясно, почему именно фтор и еет самую высокую электроотрицательность. Огносительная электроотрицатсльиость некоторых химических элементов представлена в ряду на форзаце. [c.52]

    Химический элемент — это совокупность атомов с одинаковым зарядом ддра. Заряд ядра определяет положение элемента в периодической системе Д. И. Менделеева п о-рядковый номер элемента в периодической системе равен заряду ядра атома элемента (выраженному в единицах элементарного электрического заряда). [c.6]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Если считать критерием для размещения элемента в периодической системе величину его атомной массы (атомного веса но Менделееву), следует вместо последовательности Ре—Со—N1 принять другую Ре—N1—Со, т. е. никель должен предшествовать кобальту в периодической системе. Однако, несмотря на то, что Менделеев в качестве основного параметра, определяющего последовательность расположения элементов в периодической системе, принял величину атомной массы, он, будучи блестящим химиком, счел неиравильным подчинение формальному критерию и разместил Ре, Со, N1 так, как этого требовала последовательность изменения химических свойств соответствующих однотипных соединений в триаде железа. Таким образом, Менделеев фактически размещал элементы в периодической системе в соответствии с химическими свойствами их соединений, т. е. в конечном счете, как нам теперь понятно, 1в соответствии ео строением их электронных оболочек. В частности, у элементов триады железа Менделеев учитывал большую склонность Ре к переходу в трехвалентное состояние и все уменьшающуюся устойчивость соединений со степенью окисления + 3 к кобальту и затем к никелю. [c.114]


Смотреть страницы где упоминается термин Элементы химические периодическая систем: [c.294]    [c.24]    [c.110]    [c.86]    [c.206]    [c.136]    [c.73]   
Химический энциклопедический словарь (1983) -- [ c.432 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Периодическая система

Периодическая система элементо

Периодическая система элементов

Элемент периодическая

Элемент химический



© 2025 chem21.info Реклама на сайте