Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

скачкообразная

    Квантовый характер излучения и поглощения энергии. Примерно в начале XX в. исследования ряда явлений (излучение раскаленных тел, фотоэффект, атомные спектры) привели к выводу, о энергия распространяется и передается, поглощается и испускается не непрерывно, а дискретно, отдельными порциями — квантами. Энергия системы микрочастиц также может принимать только определенные значения, которые являются кратными числами квантов. Таким образом, энергия этих систем может изменяться лишь скачкообразно или, как говорят, она квантуется. [c.10]


    Основные причины повышения содержания водорода выше нормы в электролизном хлоре — это подача рассола с повышенным содержанием загрязнений после кратковременной остановки систематическое нестабильное качество рассола, подаваемого на электролиз, что привело к скачкообразному увеличению концентрации водорода в хлоре выше допустимой нормы, а также отсутствие автоматического контроля и регулирования содержания водорода в абгазах, предусмотренного проектом. Ручное [c.47]

    Пластичные смазки, а в определенной степени и парафинистые масла, при низких температурах являются тиксотропными системами. При нагружении таких систем в момент достижения предела прочности при сдвиге лавинообразно разрушаются основные связи в структурном каркасе. Это соответствует скачкообразному снижению предела прочности от измеряемой величины до нуля. После перехода за предел прочности смазка становится жидкостью. При снятии нагрузки между фрагментами дисперсной фазы (частицами загустителя) практически мгновенно возникают новые связи и формируется новый структурный каркас. Если бы размер и форма частиц дисперсной фазы, прочность и число контактов между ними при деформировании смазки не менялись, то и все свойства смазки сохранились бы неизменными. Фактически дело обстоит сложнее. [c.274]

    На одной установке конденсации и испа зения хлора произошел взрыв в фазоразделителях хлористоводородной смеси. В результате взрыва были разрушены разделители для абгазов и линии подачи в них газовой смеси, трубопроводы подачи хлора в испаритель, подачи хлоргаза в гипохлоритный узел, фарфоровые трубопроводы для циркуляции подачи щелочи и другое оборудование. Взрыв произошел в результате скачкообразного повышения содержания, водорода в электролитическом хлоре, подаваемом на конденсацию и испарение, что привело к образованию взрывоопасной концентрации водорода в абгазах конденсации и как следствие к взрыву в трубопроводах и разделителях абгазов. [c.47]

    Как и у индивидуальных жидкостей, в жидких растворах тепловое движение частиц представляет собой колебания около временных положений равновесия в комплексах и скачкообразные перемещения из данного комплекса в соседний. Это скачкообразное перемещение частиц сближает жидкие и газовые растворы (физические смеси) и обусловливает диффузию, благодаря чему создается и поддерживается одинаковая концентрация растворенного вещества во сем объеме раствора. Обычно растворенное вещество распределя- [c.130]


    При высоком цетановом числе период запаздывания самовоспламенения достаточно короткий, топливо при впрыске его в камеру сгорания воспламеняется почти сразу, давление в цилиндре двигателя нарастает плавно, и он работает без стуков. При низком цетановом числе период запаздывания большой, впрыскиваемое в цилиндр топливо сразу не воспламеняется, а накапливается, и затем воспламеняется вся масса топлива. В этом случае давление в цилиндре нарастает скачкообразно, появляется детонация (стуки). [c.37]

    Переход электрона из одного квантового состояния в другое связан со скачкообразным изменением его энергии. Графически энергию квантовых состояний и квантовые переходы электронов можно изобразить с помощью схемы уровней энергии (рис. 5). На схеме горизонтальные линии проведены на высотах, пропорциональных значениям энергии электрона в атоме, вертикальные указывают на возможные квантовые переходы. [c.14]

    Система может состоять из одной или нескольких фаз. При этом, каждая отдельная фаза не только должна быть однородной, но и по своим свойствам должна отличаться от других фаз системы. Так, если на поверхности масла плавают несколько кусков парафина, то твердой фазой является совокупность последних. Если система состоит из нескольких фаз, то последние отделяются одна от другой поверхностями раздела, на которых имеет место скачкообразное изменение значений свойств или, как говорят, разрыв непрерывности свойств системы. Такие системы называются неоднородными или гетерогенными. [c.6]

    В производстве карбамида на установке дистилляции в узле конденсации аммиака произошел взрыв газовой смеси. Как показали проведенные анализы и расчеты, при допущенных отклонениях от установленного режима работы в газовой фазе конденсаторов аммиака образовалась взрывоопасная смесь водорода и аммиака с кислородом. Импульсом взрыва послужили искры от ударов частиц окалины и щлака о стенки внутри системы (конденсаторах или трубопроводах) при резком, скачкообразном увеличении скорости движения газа после отогрева замороженного [c.143]

    Зональная неоднородность, при которой пласт по площади состоит из нескольких зон (областей пласта) различной проницаемости. В пределах одной и той же зоны проницаемость в среднем одинакова, но на границе двух зон скачкообразно изменяется. Здесь, таким образом, имеет место неоднородность по площади пласта. [c.89]

    Возможны случаи, когда скачкообразное, быстрое изменение какой-либо независимой переменной в непрерывном стационарном процессе нарушает установившийся режим процесс при этом становится нестационарным и остается таким до тех пор, пока не установится непрерывное стационарное состояние уже с другими параметрами. Такое переходное состояние можно представить как диффузию величины помехи (возмущения). Эта проблема особенно важна в технике регулирования (динамика процесса). Характерные переменные системы, таким образом, зависят от времени. В общем проблему можно сформулировать так стационарное состояние элемента процесса нарушается тем, что на входе изменяется значение переменной (мы считаем безразличным, нроизводится ли изменение намеренно с целью приближения к техническому или экономическому оптимуму или же оно происходит самопроизвольно) важно определить, какое значение примет эта переменная на выходе из единичного элемента процесса или из их совокупности. Этот переход в системе описывается дифференциальным уравнением, в котором присутствует (на выходе) производная упомянутой переменной. Появившаяся функция возмущения сама может быть любой функцией времени и содержать производные высших порядков. В общем виде она выражается следующим образом  [c.305]

    После вызванного скачкообразного изменения состояния входного потока (а) изменение состояния выходящего потока последует лишь спустя время (й и продолжится до тех пор, пока не будет достигнут новый стационарный режим (б). [c.308]

    Самоускоряющееся распространение фронта пламени будет сопровождаться формированием ударной волны перед фронтом пламени. Данный процесс будет продолжаться до тех пор, пока во фронте ударной волны не создадутся условия, приводящие к самовоспламенению смеси и скачкообразному возникновению детонационной волны, распространяющейся стационарно. [c.143]

    Состояние, близкое к полному перемешиванию, дает возможность использовать очень важное предположение, упрощающее уравнения балансов реактора можно принять, что состав и температура смеси одинаковы во всем реакционном пространстве В результате на входе в реактор возникает скачкообразное изм енение этих параметров от значений для вводимого потока до значений, действительных в реакционном пространстве. Состав и температура отходящего потока должны быть при этом такими же, как в реакционном пространстве (рис. УП1-21). [c.293]

    Как и в предыдущей задаче, переходный процесс в аппарате состоит из бесконечного количества циклов, заключающихся в прохождении концентрационной волной рабочей зоны аппарата. При этом величина скачка концентрации на фронте волны уменьшается скачкообразно при переходе от одного цикла к другому, а процесс установления новой концентрации за фронтом волны носит колебательный характер. Предоставляем читателю возможность самому исследовать физический смысл протекающих при этом процессов. Время переходного процесса в аппарате, как и в предыдущей задаче, зависит от величины концентрации дисперсной фазы которая устанавливается в аппарате до внесения возмущения. [c.132]


    Рассмотрим теперь, как можно ИС- p . ЦМУ. Разбиение пло-толковать полученные результаты. скости параметров уо, (i. При наличии двух устойчивых стационарных состояний одно из них соответствует меньшей температуре (нижний температурный режим), другое — большей (верхний температурный режим). Бифуркация, соответствующая точке D (см. рис. III-16), заключается в исчезновении нижнего температурного режима, приводящем к скачкообразному переходу в верхний (рис. П1-16, D—> ). При понижении же температуры стенки становится невозможным верхний температурный режим и происходит скачкообразный переход к нижнему (рис. П1-16, F- G). [c.89]

    Вторые производные изобарного потенциала при фазовых переходах второго рода изменяются скачкообразно (как и при переходах первого рода)  [c.143]

    Из сказанного следует, что изменение режима при исчезновении сложного положения равновесия может носить скачкообразный характер и сопровождаться гистерезисной зависимостью координат положений равновесия от параметров. Это можно проиллюстрировать бифуркационной диаграммой (рис. 1У-21). [c.149]

    Представим себе, что устойчиво как положение равновесия А, так и В, и начальные условия соответствуют точке, находящейся в области притяжения положения равновесия А. При этом осуществляется нижний температурный режим (рис. 1У-21, точка О). При постепенном увеличении параметра уо в точке Е происходит бифуркация изображающая точка на фазовой плоскости, находившаяся в малой окрестности положения равновесия А, перескакивает к положению равновесия В (рис. 1У-21, точка Р)-, в системе скачкообразно устанавливается верхний температурный режим. [c.149]

    При уменьшении параметра Уо в точке G происходит бифуркация, и верхний температурный режим скачкообразно заменяется нижним (рис. IV-21, точка Я). [c.150]

    В отличие от стеклования, которое в пределах доступного для наблюдения времени не является фазовым переходом, кристаллизация представляет собой фазовый переход I рода, признаками которого являются скачкообразные изменения удельного объема, энтальпии и энтропии системы. Термодинамической константой этого перехода является равновесная температура плавления кристаллов Гпл. Она представляет собой верхний температурный предел. выше которого существование кристаллической фазы невозможно. Кристаллизация развивается при Т <Тпл и состоит из двух элементарных процессов — образования зародышей, а также роста и формирования кристаллитов. Первичными кристаллическими образованиями в нерастянутых полимерах являются ламели, представляющие сложенные на себя молекулярные цепи. Из них затем формируются вторичные поликристаллические образования — сферолиты, дендриты и др. [c.46]

    Ко второму классу относятся секционированные колонные аппараты, характеризующиеся многократным прерывистым или ступенчатым (скачкообразным) межфазным контактом. Аппараты этого класса разделены по высоте на определенное число последовательно работающих секций, основаниями которых часто являются распределительные (контактные) устройства различных конструкций (тарелки). После контакта на распределительном устройстве каждой секции взаимодействующие потоки проходят через сепарационное пространство, вновь контактируют на распределительном устройстве следующей секции, и т. д. В ряде случаев [c.13]

    АППАРАТЫ С МНОГОКРАТНЫМ СТУПЕНЧАТЫМ (СКАЧКООБРАЗНЫМ) КОНТАКТОМ ВЗАИМОДЕЙСТВУЮЩИХ ПОТОКОВ [c.18]

    ВОДНЫЙ раствор соли—насыщенный водяной пар . Здесь на ра-ницах соль—раствор и раствор—пар скачкообразно изменяются химический состав и плотность. [c.27]

    Ломаная кривая не отражает количественно процесс, так как при скачкообразных изменениях давления возникают движения частей системы с конечной скоростью, образуются струи, турбулентные движения в жидкости или газе. Прн этом давление в разных точках внутри системы оказывается различным, непостоянным и перестает быть параметром, определяющим состояние системы. [c.34]

    Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, называются фазовыми переходами первого рода. К иим относятся агрегатные превращения—плавление, испарение, возгонка и др. [c.140]

    Найдено, что нри заданной плот[юсти тока кислородное перенапряжение с течением времени изменяется. Перенапряжение кислорода, как правило, со временем растет, причем для одних металлов медленно и постепенно (железо, платина), для других скачкообразно (свинец, медь). За величину перенапряжения принимают обычно его установившееся значение. Оно отвечает, по-видимому, выделению кислорода на поверхности оксида, устойчивого в данной области потециалов. На кривых ё—1д/ или т]-— gj, полученных при выделении кислорода, часто наблюдаются один или несколько перегибов, отражающих внезапные изменения в кинетике процесса области потенциалов. На кривых Г—lg/ или г]—lg , полученных с другими электродами, можно выделить один или несколько 14 л. И. Антропов [c.421]

    Эта зависимость хорошо соблюдается до критического значения R kp = 2200, а затем происходит скачкообразный переход ламинарного режима течения в турбулентный с некоторым повышением значения X. Далее, для гладких труб медленное уменьшение X описывается формулой Блаузиуса Х = 0,316 Re-° что соответствует более быстрому росту потери напора со скоростью потока Лр вместо Др и. Для сильно же шероховатых труб в турбулентной области I = onst и Др  [c.24]

    Для углеродистых сталей характерно скачкообразное изменение ударной вязкости с понижением температуры. Можно выделить три зоны (рис. 6) зону / хрупких изломов при t < i-2, зону II рассеяния, где наб подаются и хрупкие и вязкие изломы (в зависимости от марки стали), и зону III вязких изломов ири t > Зоне рассеяния соответствует критический интервал температур < t < который характерен только для углеродистых сталей и лежит в пределах примерно от —10 до —30° С. Критической температурой хладноломкости для углеродистых сталей считают температуру ниже которой наблюдается хрупкий излом, а выше KOTopoi i — только вязкий излом. Следует отметить, что с уменьшением содержания углерода критическая температура несколько сннжаегся. В сильной степени на хладноломкость влияют примеси фосфора. [c.14]

    При укладке же колец в шахматном порядке вследствие скачкообразного изменения направления струй при переходе от предыдущего слоя к последующему множитель пропорциональности возрос в 3 раза / шахм  [c.68]

    Обычно динамические свойства элементов процесса наглядно представляются временными характеристиками (рис. 14-6, в), которые определяют закон изменения выходно11 величины во времени при скачкообразном изменении входной величины на единицу при нулевых начальных условиях (элемент в покое). Такие характеристики часто называют кривыми разгона. [c.306]

    Скачкообразное увеличение приведенной скорости сплошной фазы на стоке приводит к возникновению дополнительного нисходящего потока сплошной фазы по всей высоте аппарата, что в свою очередь вызывает снижение скорости движения частиц и, как следствие, уменьшение приведенной скорости дисперсной фазы. В месте ввода дисперсной фазы образуется уплотненный слой частиц, который со скоростью и% начинает распространяться вверх по колонне. Новое установившееся значение концентрации дисперсной фазы и приведенной скорости сплошной фазы, а также нулевое значение возмущения приведенной скорости дисперсной фазы устанавливаются в произвольной точке аппарата после прохождения концентращюнной волны. Закон изменения уровня при скачкообразном изменении приведенной скорости сплошной фазы на стоке можно найти, используя уравнение (2.149) и соотношения (2.137) и (2.153). Приг7 = 0 [c.124]

    При 0 = 01 на фазовой плоскости появляется полуустойчивый предельный цикл, окружающий устойчивый фокус (см. рис. IV-13, (5). С ростом 0 полуустойчивый цикл распадается на два простых — неустойчивый и устойчивый (см. рис. 1У-13, а). Так как фокус остается устойчивым, то автоколебания не возникают, если только не перебросить изображающую точку за неустойчивый предельный цикл, т, е. осуществить скачкообразное изменение начальных условий. При 0 = 02 неустойчивый предельный цикл стягивается в фокус, который становится не-усуойчивым, и в системе возникают автоколебания с амплитудой Лз. При уменьшении параметра амплитуда автоколебаний уменьшается, и изображающая точка находится в окрестности предельного цикла до тех пор, пока при 0 = 01, Л =Л[ устойчивый цикл не сольется с неустойчивым, образуя полуустойчивый цикл, который в дальнейшем исчезнет (см. рис. 1У-13, б). [c.143]

    Если плотность разветвления превышает некоторую критическую величину ркр в системе возникают частицы надмолекулярных, а затем и макроскопических размеров, представляющие собой трехмерные пространственные структуры [2]. С точки зрения обычных молекулярных представлений их молекулярные массы и размеры можно назвать бесконечно большими. Образование таких структур проявляется в резком скачкообразном увеличении вязкости системы при полимеризации в массе и в появлении геля в 1астворах полимеров. [c.25]

    Однако подход к стеклованию как к релаксационному процессу, являющийся в настоящее время общепринятым, не исключает и термодинамическую трактовку этого явления. Основанием для такой трактовки служит то, что многие признаки перехода полимера в стеклообразное состояние — излом на графике зависимости удельного объема от температуры, скачкообразное изменение теплоемкости— делают этот переход подобным так называемым термодинамическим (фазовым) переходам 2 рода. Поэтому в последнее время получает все большее распространение новая точка зрения на стеклование, сочетающая в себе и кинетический и термодинамический подход. Она состоит в том, что экспериментально наблюдаемое значение Тс является лишь некоторым приближе-нием к температуре истинного фазового перехода Гг, который однако не может быть реализован за реально доступный промежуток времени. Согласно расчету Адама и Гибса, сделанному на молекулярной основе, Г2 лежит примерно на 60° ниже Гс и характеризуется тем, что конфигурационная энтропия цепей равна нулю, т. е. полностью прекращаются поворотные движения в цепях [8]. Этому состоянию соответствует бесконечно большая вязкость полимера, что в ранних работах служило количественным эмпирическим признаком стеклования. [c.43]

    При наличии избытка углеводородов происходит образование капельной эмульсии, стабилизация которой достигается адсорбцией эмульгатора из водного раствора с образованием мономоле-кулярного адсорбционного слоя, препятствующего коалесценции капель. При этом на границе раздела фаз возможно формирование жидко-кристаллических структур (мезофаз), сопровождающееся скачкообразным повышением вязкости и одновременно повышением агрегативной устойчивости системы [24—27]. Считают, что избыток эмульгатора над адсорбционным слоем на поверхности капель образует мицеллярную структуру, обладающую вязкоэластичностью и эффектом самоотверждения. Подобное поведение эмульсионных систем объясняется квазиспонтанным образованием на границе раздела фаз углеводородный раствор — ПАВ термодинамически устойчивых ультрамикроэмульсий прямого и обратного типов, что, по-видимому, оказывает основное влияние на обеспечение агрегативной устойчивости таких систем. [c.146]

    При превращении одной фазы в другую удельные (интенсивные) свойства вещества (удельный или мольный объем, внутренняя энергия и энтропия одного грамма или одного моля) изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией ее состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при О °С и 1 атм, при поотоянном давлении и подведении теплоты превращается в двухфазную систему лед—жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются экстенсивные свойства системы в целом (внутренняя энергия, энтальпия, энтропия и др.). [c.139]

    Рис. [V, 5, на котором представлена зависимость теплоемкости жидкого гелия от температуры вблизи абсолютного нуля (Кезом и Клузиус, 1932), показывает такое скачкообразное изменение теплоемкости, происходящее пр превращении двух модификаций жидкого гелия при 2,2 °К (это превращение относится к переходам второго рода) .  [c.143]

    Ограничиваясь квантованными, дискретными состояниями, переходы между которыми прерывны, т. е. скачкообразны, можно представить W для системы из N молекул как объем многомерного фазового пространства. На осях координат этого пространства откладываются координаты и импульсы (количества движения) для всех степеней свободы f каждой молекулы (три поступатель- [c.327]

    Чтобы изобразить графически соотношения между значениями Т, р, V, необходимо использовать систему координат из трех взаимно перпендикулярных осей, каждая из которых отвечает значениям одной переменной. Любое состояние однокомпонентной системы, отвечающее той или иной совокупности величин Т, р, V, изображается в такой системе координат одной точкой. Совокупность таких экспериментально полученных точек дает диаграмму, состояш ую из нескольких более или менее сложных поверхностей, расположенных определенным образом в пространстве. Точки, не лежаш ие на этих поверхностях, не имеют физического смысла. Действительно, всякая фаза, будь то газ, жидкость или кристаллы, при заданных давлении и температуре имеет строго определенный объем, т. е. каждому сочетанию значений Тир отвечает единственно возможное значение V для данной фазы. Подобные объемные диаграммы, позволяюш,ие проследить за изменением всех переменных, входящих в уравнение состояния, будем называть полными диаграммами состояния. При переходе от одной фазы к другой мольный объем изменяется скачкообразно, поэтому в объемной диаграмме поверхность, отвечающая каждой новой фазе, сдвинута относительно других поверхностей. [c.357]


Смотреть страницы где упоминается термин скачкообразная: [c.149]    [c.57]    [c.15]    [c.220]    [c.185]    [c.142]    [c.142]    [c.134]    [c.34]    [c.367]   
Эволюция (2006) -- [ c.67 , c.113 , c.122 , c.126 , c.169 ]




ПОИСК







© 2025 chem21.info Реклама на сайте