Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение свободнорадикальное в ароматическом ряду

    С момента выхода в свет первого издания в работу по выяснению механизмов органических реакций включилось большое число химиков во всем мире, что привело к накоплению огромного количества новых фундаментальных данных, касающихся механизмов органических реакций. За это время были развиты представления об участии ионных пар в реакциях замещения и отщепления, был открыт ферроцен, что способствовало углублению взглядов на природу ароматичности, были вскрыты закономерности термических и фотохимических реакций электроциклизации (правила Вудварда — Гофмана), был развит корреляционный анализ. В последние 10—15 лет большие успехи были достигнуты в исследовании механизмов свободнорадикальных реакций в растворе, начато изучение механизма электрофильного замещения у насыщенного атома углерода и нуклеофильного замещения в ароматическом ряду. Наконец, значительный прогресс был достигнут в теории влияния растворителя на скорость реакций, и динолярные апротонные растворители стали широко применяться в химических лабораториях и в производственной практике. Кроме перечисленных важнейших достижений и открытий, было решено множество других более частных, по трудных проблем, например установлен механизм бензидиновой перегруппировки. Выросли в самостоятельные области химия карбониевых ионов и карбанионов, развита химия карбенов, большое внимание в изучении механизмов реакций стало уделяться промежуточно образующимся нестабильным частицам. Все эти вопросы нашли отражение в книге Ингольда, поэтому по сравнению с первым [c.5]


    С момента выхода в свет первого Справочника химика накопилось огромное количество новых фундаментальных данных, касающихся теоретических и практических основ получения продуктов промышленности неорганических и органических веществ. Успехи в методах оценки свойств продуктов позволили более полно их охарактеризовать. Так, в области органических производств был достигнут значительный прогресс в исследовании механизма свободнорадикальных реакций в растворе, в изучении механизма электрофильного замещения у насыщенного атома углерода и нуклеофильного замещения в ароматическом ряду. В результате успешного изучения влияния растворителя на скорость реакций диполярные апротонные растворители стали широко применяться в производственной практике. [c.3]

    До недавнего времени в руководствах по синтетической органической химии материал группировался по формальному признаку — типу соединений, которые синтезируются ). Однако при таком построении объем материала, который учащемуся необходимо усвоить, чтобы понять сущность превращений, происходящих при синтезе какого-то определенного класса органических соединений, чрезвычайно велик. Знакомясь, например, с разделом Синтез галогенсодержащих соединений , читатель встретится с необходимостью получить представление о нуклеофильных и свободнорадикальных реакциях замещения, об электрофильных и радикальных реакциях присоединения к кратной связи, о механизме электрофильного замещения в ароматическом ряду и т. д. [c.5]

    Хотя в большинстве реакций свободнорадикального замещения в ароматическом ряду уходящей группой является водород, в некоторых случаях наблюдается ипсо-атака (т. 2, разд. 11.5) и ипсо-замещение (при котором уходящими группами служат, например, Вг, N02 или СН3СО) [58]. [c.68]

    Мы сохранили основное построение первого издания по классам с разделением на алифатические и ароматические соединения. Такое построение представляется рациональным, поскольку оно дает возможность студенту познакомиться поочередно с каждым типом структур. Кроме того, оно логично, поскольку зависимость свойств вещества от его строения, а следовательно, от принадлежности к определенному классу, является основой органической химии. Так, при изучении алканов студент естественно знакомится с реакциями свободнорадикалького замещения, при изучении алкенов — с реакциями электрофильного и свободнорадикального присоединения, при изучении ареиоБ — с реакциями электрофильного замещения в ароматическом ряду. [c.7]


    Первые процессы крекинга, осуществленные в 1920—1930 гг., представляли некаталитические термические реакции. В этих реакциях большие молекулы парафинов или боковые цепи замещенных ароматических молекул расщепляются на меньшие молекулы насыщенных углеводородов и олефинов считается, что в качестве промежуточных соединений при этом образуются незаряженные свободные радикалы. Главными конечными продуктами, полученными из парафинов и олефинов и боковых цепей ароматики, были углеводороды от С1 до С3. Однако очень скоро было установлено, что лучшие топлива можно получать каталитическим разложением, и некаталитический термический крекинг был в основном вытеснен каталитическим крекингом на древесном угле или платине, на различных кислотных катализаторах, как, например, на обработанных кислотой глинах или смесях силикагеля с окисью алюминия или на катализаторах двойного действия , состоящих из платины, никеля или молибдена на окиси алюминия. Считается, что кислотные катализаторы действуют подобно катализаторам Фриделя — Крафтса, превращая олефины в карбониевые ноны, которые участвуют в различных превращениях, давая ряд продуктов, совершенно отличных от получаемых при термическом крекинге, с большими выходами углеводородов Сз и С4, разветвленных олефинов, изопарафинов и ароматических углеводородов, которые, в частности, используются в составе моторных топлив или как исходные вещества для синтеза других химических продуктов. По-видимому, эти реакции на металлических катализаторах по своему характеру относятся к свободнорадикальным, но тем не менее получаемые в них продукты более полезны, чем продукты термического крекинга, так как здесь в большей степени идут изомеризация в разветвленные цепи, дегидрирование С - [c.336]

    Стадией, определяющей скорость реакции, является присоединение радикала к ароматическому субстрату. Об этом свидетельствуют отсутствие заметного изотопного эффекта при арнлировании бензола и уменьшение подвижностей атомов галогена в ряду Р>1>Вг>С1 при свободнорадикальном ипсо-замещении [357], указывающие, что разрыв связи с уходящим атомом происходит не на лимитирующей стадии. [c.121]

    Малая селективность замещения и недостаточная активность нуклеофильных алкильных радикалов ограничивает препаративную ценность свободнорадикального алкилирования карбоциклических ароматических соединений. Однако в ряду ароматических азагетероциклов, обладающих в протонированной форме высокой электронодефицитностью свободнорадикальное алкилирование является ценным методом синтеза. К его достоинствам относятся высокая селективность, хорошие выходы и простота эксперимента. Роль протонирования может быть проиллюстрирована на примере метилирования. хинолина ди-трег-бутилпероксидом. В отсутствие кислоты метилирование направляется во все возможные положения 2, 4, 5, 8 и остальные (соотношение 1 2,4 1,6 3 1,8), а в присутствии НС1 — исключительно в положения 2 и 4 (1 1) [4, т. 8, с. 225]. В реакциях с протонированными азагетероциклами нуклеофильные алкильные радикалы более активны и более селективны, чем с непротонированными основаниями [1046J. Ориентация при свободнорадикальном алкилировании гетероароматических оснований в присутствии кислот совпадает с ориентацией при нуклеофильном алкилировании (см. разд. 12.2) и противоположна ориентации при электрофильном алкилировании по Фриделю —Крафтсу (см. разд. 6.1). [c.457]

    В течение последних десяти ле г опубликовано значительное число работ в области гемолитических или свободнорадикальных реакций замещения в ряду бензола и его производных [1,2]. В результате этих работ, выполненных не только в нашей стране, но и в США, Германии, Японии и СССР, стало возможным определить как относительные общие скорости реакции для большого числа моноциклических ароматических соединений, так и факторы парциальных скоростей реакций для различных положений, способных к замещению в пределах одной молекулы. В основном эти данные были получены при изучении реакций фенилирования с использованием перекиси бензоила в качестве источника свободных радикалов. Способность перекиси бензоила давать свободные фенильные радикалы была обнаружена в 1934 г. [3] и был предложен механизм реакции фенилирования, включающий присоединение и последующее отщепление [4, 5]. Недавно этот механизм процесса фенилирования был подтвержден Милятинской, Багдасарьяном и Израилевич [6]. Они нашли, что при распаде перекиси бензоила в дейтеробензоле дифенил образуется путем присоединения фенильного радикала к молекуле бензола вновь образовавшийся радикал I затем теряет атом водорода (или дейтерия) без изотопного эффекта [c.313]

    В ряде работ советских авторов было изучено свободнорадикальное нитрование действием МОг или ЫОз [229] имеется довольно много сообщений по свободнорадикальному галогенирова-нию и алкилированию [230]. Механизм этих реакций всегда весьма сложен, и в его установлении пока не достигнуто заметного прогресса. Как и в случае реакций гидроксилирования, процессы замещения, индуцированные излучением, проще, чем собственно химические реакции. Ясно, что можно поставить эксперименты по радиационно-химическому нитрованию, галогенированию и другим типам замещения и исследовать скорости образования и разложения неустойчивых промежуточных продуктов методом импульсного радиолиза и суммарный выход продуктов (т. е. радиационный выход G) путем применения достаточно чувствительных аналитических методов. Однако до настоящего времени имеется лишь очень немного работ по нитрованию и хлорированию ароматических соединений, индуцированным излучением, и полностью отсутствуют работы по другим типам замещения. [c.168]



Смотреть страницы где упоминается термин Замещение свободнорадикальное в ароматическом ряду: [c.204]   
Теоретические основы органической химии (1979) -- [ c.476 , c.485 , c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Свободнорадикальное замещение ароматическое



© 2024 chem21.info Реклама на сайте