Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Композиционные материалы для упаковки

    Однако потери ингибитора через такие материалы настолько незначительны, что срок службы упаковки лимитируется не утечкой ингибитора, а влиянием агрессивных газов, диффундирующих внутрь упаковки к металлу, и долговечностью (атмосферостойко-стью) упаковочного материала. Использование материалов с высокими барьерными свойствами (комбинированные, армированные и композиционные) позволяют, кроме увеличения срока службы упаковки, снизить расход ингибитора, вносимого в упаковку для консервации металлоизделия, включая уменьшение его содержания в 1 м антикоррозионной бумаги. [c.164]


    Этот перечень материалов еще раз показывает, как трудно дать общее определение, которое охватывало бы все приведенные группы полимерных материалов, резко различающиеся между собой, особенно если учесть, что полимерная фаза в свою очередь может быть композиционной. Фактически ни один полимерный материал не является однофазным или однокомпонентным, хотя некоторые компоненты могут присутствовать в очень небольших количествах, резко изменяя физические свойства основного полимера. С позиций применения полимерных материалов для упаковки модифицирование их различными добавками является наиболее важным технологическим приемом расширения ассортимента материалов, поскольку это значительно легче и экономичнее, чем создание новых полимеров. [c.454]

    Усилия ученых направлены на разработку новых технологических методов получения керамики, на пoJ yчeниe новых композиций и микроструктур, способных пoдaвJ ять рост трещин. Кера.мика гфедоставляет широкие воз.можности производства эконо.мически выгодных материалов с заданны.ми свойствами на основе a-v ыx простых компонентов. Физические свойства таких материалов могут быть улучшены за счет минимальных изменений состава и ориентации кристаллических зерен, соединения различных видов кера.мики в один композиционный материал, а также за счет уничтожения или специального введения в структуру дефектов. Управление составо.м и микроструктурой керамики достигается за счет кристаллизации стекол, предельного измельчения исходного порошка высокой химической чистоты, а также плотной упаковки и прочной хи.мической сшивки частиц порошка. [c.53]

    Поскольку модули упругости наполнителя и матрицы сильно различаются, для обеспечения монолнтности пластика необходимы полимерные матрицы, значения предельных удлинений которых значительно превышают среднее удлинение композиционного материала при сохранении достаточных значений прочности. Особое значение имеет прочность при сдвиге, так как именно малая прочность при сдвиге между слоями является одним из основных недостатков армированных пластиков. При этом предполагается, что адгезионная прочность превосходит прочность полимера, т. е. разрущения по границе раздела ие происходит. Напряжения и деформации для квадратичной и гексагональной укладки волокон [1, 6, 22—26] являются функцией отнощения модулей наполнителя и матрицы и плотности упаковки волокон. Если считать, что полимерная матрица и наполнитель подчиняются закону Гука, то при объемной доле волокна от 0,6 до 0,75 отнощение предельных удлинений изменяется от 5 до 15 [26]. Если же учитывать нелинейное вязко-упругое поведение полимерной матрицы, то это отнощение еше больше возрастает. Увеличение предельной деформации связующего за счет снижения его модуля упругости и прочности, как это происходит при пластификации, не приводит к повышению прочности пластика, так как прн уменьшении модуля упругости матрицы ее предельное удлинение, необходимое для сохранения монолитности, возрастает. Таким образом идеальное связующее должно обладать большим удлинением при высоких значениях модуля упругости и прочности, особенно при сдвиге. В работе [22] приведен расчет показателей такого идеального связующего, наполненного ( 1 = 0,7) бесщелочным стеклом и высокомодульным стеклом ВМ-1 (табл. 8.1). Ни одно из известных эпоксидных связующих не отвечает полностьк> приведенным в таблице требованиям [22], однако они могут служить отправной точкой для сравнения различных эпоксидных композиций. [c.212]


    Случай (см. табл. VI.2). Дисперсия состоит из дефлокулиро-ванных частиц (жестких или пластичных) в среде разбавителя, содержащего большой объем (т. е. значительно больший объем, чем общий объем пустот между частицами при их статистической плотной упаковке) инертного материала, который несовместим с частицами. При испарении летучей фракции разбавителя, хотя частицы и сближаются, процесс прекращается прежде, чем достигается плотная упаковка хорошо диспергированных частиц. Следовательно, образующаяся пленка будет состоять из концентрированной дисперсии частиц в нелетучем компоненте разбавителя (рис. 1.4). Если оставшийся разбавитель, жидкий, то пленка будет липкой или пастообразной если же разбавитель твердый, то пленка будет представлять собой композиционный материал, непрерывная фаза которого образована растворимым пленко-образователем с включенными диспергированными частицами полимера. [c.276]

    Вывод уравнения для расчета продоАного модуля Юнга 11,. аналогичного уравнению, приведенному ранее в разделе 4.3.1, основывается на том же предположении, что волокна располагаются параллельно друг другу в матрице, но вводится коэффициент непараллельности волокон, учитывающий отклонение от точной параллельности или прямолинейности волокон. Уравнения для расчета 22, 22 и С имеют более сложный характер и включают в себя коэффициент плотности упаковки, учитывающий, что при высокой степени наполнения однонаправленного композиционного материала многие волокна могут касаться друг друга, т. е. не быть разделенными матрицей. [c.210]

    Практически оказалось, что при однонаправленном армировании самые различные механические и термические характеристики (модуль упругости, коэффициент Пуассона, теплопроводность, термическое расширение) вдоль направления волокон подчиняются простому закону смешения. Следует отметить, что рассмотренные модели дают довольно скромные результаты при оценке свойств в поперечном направлении. В этом случае целесообразно привлекать более сложные модели. Использование таких моделей привело к выводу о том, что свойства в поперечном направлении и модуль сдвига композиционного материала чувствительны к разности в значениях коэффициента Пуассона, геометрии волокна, способу упаковки волокон и, в особенности, к свойствам матрицы. [c.81]

    Оптимальные составы композиционного материала должны характеризоваться не только хорошей совместимостью компонентов, входящих в их состав, но и возможно более высокими показателями основных эксплуатационных характеристик. Используя метод симплекс-ре-шетчатого планирования, можно оптимизировать исследуемь)й материал по всем показателям, интересующим потребителя. Для этого с помощью ЭВМ рассчитывают координаты линий постоянного значения для всех исследуемых свойств. Затем на симплекс наносят изолинии предельных значений нескольких наиболее существенных для эксплуатации данного материала параметров, ограничивая таким образом область оптимального состава материала. На рис. 3.16 приведен пример нахождения оптимального состава композиций на основе полиэтилена, пластификатора (вакуумное масло) и консерванта, используемых для изготовления пленок, применяемых при упаковке скоропортящихся продуктов. Ка диаграмме нанесены, изолинии предельно допустимых значений параметров оптимизации (сохранность продукта в баллах, формуемость и жесткость пленок). Стрелками показано желательное направление изменения параметров. Область оптимального состава не должна выходить за пределы, ограниченные изолиниями предельно допустимых значений параметров оптимизации. [c.100]

    Пенопласты. Еще одним классом упаковочных полимерных композиционных материалов, который рассмотрен в этой главе, являются материалы с полимерной непрерывной и газообразной дисперсной фазами. Наибольшее распространение в процессах упаковки, обработки и хранения товаров и продуктов получили пенополпсти-рол, пенополиолефины и пенополивинилхлорид. Следует при этом подчеркнуть, что использование пенопластов, помимо чисто те.х-нических преимуществ, существенно снижает стоимость материалов. Это обусловлено тем, что стоимость полимерных упаковочных материалов в решающей степени определяется стоимостью полимеров, а введение газообразной дисперсной фазы резко увеличивает объем материала на единицу массы. Достоинства пенопластов с точки зрения их физико-технических свойств обусловлены более высокой жесткостью листов или пленок пенопластов на единицу массы по сравнению с монолитным материалом. Так, уменьшение плотности материала за счет вспенивания в 2 раза должно приводить к удвоению его толщины и возрастанию жесткости в 8 раз при той же массе материала. Поскольку при этом модуль упругости материала уменьшается пропорционально плотности также вдвое, реально жесткость материала возрастает в 4 раза. [c.461]


Рис. 10. Модель композиционного катериала. Показано распределение по сечению (упаковка) аркатуры и материала матрицы. Рис. 10. Модель композиционного катериала. Показано распределение по сечению (упаковка) аркатуры и материала матрицы.

Смотреть страницы где упоминается термин Композиционные материалы для упаковки: [c.192]    [c.154]    [c.116]   
Промышленные полимерные композиционные материалы (1980) -- [ c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Материал композиционный



© 2025 chem21.info Реклама на сайте