Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пологены

    Из перечисленных углов наиболее крутым обычно является угол внутреннего трения, несколько меньшим — угол обрушивании и наиболее пологим — угол естественного откоса. [c.59]

    Сложные эфиры головных погонов с 1,3-бутиленгликолем имеют низкую температуру застывания и пологую кривую вязкости. Их можно использовать по преимуществу как тормозные жидкости. [c.473]


    В зависимости от длины молекулярной цепи и структуры полигликолей вязкость их может изменяться в широких пределах от 6—8 до 10 ООО сст и более при 50° С. Полигликолевые масла отличаются от нефтяных масел лучшими противоизносными свойствами, низкой температурой застывания (от 55 до —65° С), высокими индексами вязкости (в пределах 135 180), малой испаряемостью. Полигликолевые масла не образуют смолистых соединений при повышенных температурах в присутствии кислорода, воздуха, выдерживают высокие температуры (до 300° С), не корродируют металлы, не вызывают набухание или размягчение синтетической и натуральной резины. Воспламеняются они с большим трудом, чем нефтяные масла. В табл. 34 приведены свойства масел на основе полигликолей, а на рис. 75 — их вязкостно-температурные кривые. На этом же рисунке для сравнения нанесены вязкостно-температурные кривые минеральных масел МК-8 и турбинного МК-22. Из рисунка видно, что полигликолевые масла имеют более пологую вязкостно-темпера- турную кривую, чем минеральные масла равной вязкости. [c.147]

    Чем меньше масло меняет свою вязкость при изменении температуры, или, другими словами, чем по-ложе вязкостно-температурная кривая, тем выше качество масла. Это объясняется тем, что масло с пологой кривой вязкости при высоких температурах сохраняет достаточную вязкость для надежной смазки деталей двигателя, а при низких температурах вязкость такого масла не настолько велика, чтобы затруднить запуск двигателя и прокачку масла по трубопроводам. В спецификации на масла приводятся вязкости минимум при двух температурах и данные о пологости вязкостнотемпературной кривой или в виде величины отношения кинематической вязкости при низкой температуре (50° С) к вязкости масла при высокой температуре (100° С), или в виде индекса вязкости. [c.155]

    Индекс вязкости является относительной величиной, показываю щей степень изменения вязкости масла в зависимости от температурь т. е. характеризует пологость температурной кривой вязкости масла. Он определяется при помощи двух серий эталонных масел. Эталонные масла первой серии имеют очень пологую температурную кривую вязкости, и их индекс вязкости условно принят за 100,единиц. Эталонные масла второй серии имеют очень крутую температурную кривую вязкости, и их индекс вязкости принят за нуль. Масла одной и той же серии отличаются друг от друга только величиной вязкости. Определение индекса вязкости основано на сравнении испытуемого масла с двумя эталонными маслами двух серий, имеющими при 98,8° С вязкость, одинаковую с вязкостью испытуемого масла.  [c.155]


    Масла, обладающие более высоким индексом вязкости, т. е. более пологой температурной кривой вязкости, предпочтительнее, чем масла с крутой кривой вязкости, т. е. низким индексом вязкости. [c.156]

    Жидкие среды для смазок. Высококачественные смазки могут быть получены только при использовании для их производства жидких масел, обладающих необходимыми эксплуатационными свойст вами. Применяемые для этого масла должны иметь пологую вязкостно-температурную характеристику, низкую испаряемость и хорошую химическую стабильность в широком диапазоне температур. В настоящее время при производстве смазок используются товарные минеральные масла, подобранные по уровню вязкости в зависимости от назначения смазки. [c.191]

    Весьма перспективной следует считать разработку в качестве загущающей среды специальных синтетических жидкостей, в частности полисилоксанов, диэфиров, полигликолей, фторуглеродов и других органических жидкостей. Синтезировать в принципе можно жидкости с любыми наперед заданным свойствами, в том числе с такими крайне необходимыми, как пологая вязкостно-температурная характеристика, химическая и механическая стойкость и т. п. Сейчас можно уже говорить об успешной работе по созданию и применению смазок на основе силиконовых жидкостей, работоспособных в интервале температур от —80 до + 300° С. [c.191]

    Онн должны обладать пологой вязкостно-температурной кривой и низкой температурой замерзания. Вязкость является одной из важнейших характеристик гидравлических жидкостей. Чрезмерное уменьшение вязкости при положительных температурах приводит к течи жидкости через различные соединения и уплотнения гидравлической системы, что вызывает потерю давления и замедляет действие агрегатов. Малая вязкость жидкости не позволяет ей предотвращать сухое и полусухое трение деталей гидравлической системы. Высокая вязкость жидкости приводит к увеличению сопротивления движению жидкости по трубопроводам, особенно при низких температурах. [c.212]

    Оптимальная температура питания, как правило, соответствует значительно более пологому оптимуму функции цели цо сравнению с указанными выше параметрами. Однако можно отметить следующую тенденцию чем выше оптимальное давление, тем ниже должна быть оптимальная температура сырья, т. е. оптимальная доля его отгона. [c.126]

    Анализ эволюции технических систем как функции времени показывает [459], что практически все они в процессе своего развития обнаруживают экспоненциальный или близкий к нему рост своих технических характеристик. Рано или поздно, в развитии систем наступает предел. В этом случае кривая динамики ее развития принимает более пологий вид и, в итоге, выходит на плато. Интегрально, кривая приобретает 5-образный вид и носит название логистической. В полулогарифмической системе координат с линейной шкалой времени кривая развития технической системы изображается прямой с угловым коэффициентом, имеющим принципиальное значение как показатель, характеризующий тенденции в развитии системы. [c.37]

    Результат интерференции сказывается в том, что при введении в эксплуатацию ряда скважин (работающих в одинаковых условиях) прирост суммарного дебита уменьшается. Кривая зависимости суммарного дебита от числа скважин п с ростом п становится все более пологой (см. рис. 4.1). Чем ближе расположены скважины друг к другу, тем сильнее сказывается эффект интерференции и тем меньшим оказывается суммарный дебит. [c.116]

    Основные рабочие характеристики Q—// могут быть пологими, крутыми, с максимумом и непрерывно снижаться (рис, 2), [c.11]

    Рассмотрим трех- и четырехвалковые листогибочные машины с точки зрения возможности получения точного радиуса изгиба. На рис. 22 показаны графические зависимости изменения радиуса изгиба от относительного положения верхнего и боковых валков. Чем больше расстояние между валками, тем более пологий характер имеют кривые, т. е. при изменении относительного положения валков на одну и ту же величину машины с большим меж-центровым расстоянием между боковыми валками имеют меньшее изменение радиуса изгиба. На четырехвалковых машинах с расстоянием между боковыми валками в 2—3 раза большим, чем у трехвалковых, величину радиуса изгиба можно получить значительно точнее, чем у трехвалковых машин. [c.56]

    Совместный пологий увод кромок и кривизна поверхности на длине не менее 500 мм, наружу или внутрь (рис. 161, а, б, в) [c.242]

    Для масел, обладающих нри стандартизованных температурах близкими уровнями вязкости, решающее значение в отношении вязкостного застывания имеет пологость вязкостно-температурной кривой или индекс вязкости. Для низкоиндексных масел [c.13]

    Оптическая плотность топлива сильно изменяется при концентрации дисульфидов до 0,1 %, в дальнейшем кривая оптической плотности становится более пологой. Попутно следует отметить, [c.97]

    Пологость температурной кривой вязко с т и. В обычных эксплуатационных условиях температура смазки изменяется под воздействием температуры окружающей среды и может возрасти до температуры смазываемых поверхностей или горячих частей цилиндрово-поршневой группы двигателей. [c.172]

    Из двух масел, обладающих при данной рабочей температуре приблизительно одинаковой вязкостью, следует предпочесть то, которое обладает более пологой кривой вязкости. [c.173]

    Получение масел с пологой температурной кривой вязкости зависит от подбора сырья и применяемых методов очистки. Наиболее пологой кривой вязкости обладают парафиновые и нафтеновые углеводороды с длинными парафиновыми цепями. [c.173]

    Для приближенной характеристики степени изменения вязкости в зависимости от температуры для некоторых масел нормируется вязкость при 50 и 100° С либо отношение вязкости при 50 и 100 С. Чем меньше величина этого отношения, тем более пологой температурной кривой вязкости обладает масло. [c.173]


    Пенетрация смазок зависит в основном от количества загустителя (мыла и твердых углеводородов) и вязкости минерального масла, входящего в смазку. Обычно пенетрацию определяют при 25° С. Для смазок, работающих в широком температурном интервале, существенно также знать пологость температурной кривой пенетрации, устанавливаемой путем определения пенетрации при двух или нескольких разных температурах. [c.225]

    Это свойство оказывается полезным именно при аппроксимаций газодинамических характеристик, крутизна которых резко возрастает по мере приближения к максимальной производительности элемента, так как на этом участке точки располагаются более Часто, чем на пологих участках в центре характеристики. [c.167]

    Следует иметь в виду, что понятия нерастворимости и тугоплавкости могут оказаться гипотетическими, аналогично тому, как с увеличением температур выкипания нефтяных фракций меняются их составы и молекулярные веса. Можно предположить, что и у асфальтовых соединений постепенно будут меняться важнейшие свойства. Если подобрать ряд растворителей с постепенно изменяющейся растворяющей способностью, то, вероятно, можно будет получить непрерывные и пологие кривые изменения свойств асфальтовых веществ. [c.540]

    Основные преимущества синтетических масел перед маслами нефтяными — их высокая термоокислительная стабильность, улучшенная смазочная способность, меньшая испаряемость при работе в двигателях, более пологая вязкостно-температурная кривая. Поэтому за рубежом синтетическим маслам для авиационных ГТД уделяют большое внимание [6]. [c.68]

    Степень изменения вязкости масел при изменении температуры оценивается 1) величиной отношения значений кинематической вязкости при температуре 50 и 100° С или при температуре О и 100° С 2) индексом вязкости масла. Чем меньше отношение значения вязкости при температуре 50° С к значению вязкости при температуре 100° С или вязкости при температуре 0 С к таковой при температуре 100° С, тем более пологой оказывается температурная кривая вязкости и тем лучше вязкостная характеристика масла. [c.176]

    Разгрузка, транспортирование и складирование металлоконструкций. Приемка и разметка основания. При монтаже нескольких резервуаров на одной монтажной площадке устраивают разгрузочную площадку с пологим пандусом, дающим возможность разгружать рулоны с платформы и погружать на трайлеры, сани или подкладные листы. Разгрузку рулонов резервуаров производят по подкладным балкам. [c.241]

    Чем выше молекулярный вес полиизобутиленов, тем длина молекул больше. В настоящее время получены полиизобутилены с молекулярным весом более 20 ООО. Полиизобутилен представляет собой слаботекучую липкую массу плотностью при 20° С около 0,880. В минеральных маслах полиизобутилены растворяются при 60—80° С в любых соотношениях. При добавлении в масло одного и того же количества полиизобутиленов различного молекулярного веса вязкость масла увеличивается тем сильнее, чем выше молекулярный вес полиизобутиленов. Применением вязкостных присадок можно повысить вязкость маловязкого масла при основной рабочей температуре до требуемого значения, сохранив пологость вязкостно-температурной характеристики, свойственную маловязкому маслу (рис. 84). Крупные малоподвижные молекулы полимера уменьшают поперечное сечение пространства, по которому протекает маловязкий компонент масла, тормозят его течение. Внешне это проявляется как увеличение внутреннего трения между слоями масла, т. е. как увеличение [c.157]

    Что смеси слабых кислот с их солями действительно должны обладать буферным действием, видно и из соответствующих кривых титрования. Например, пологий участок кривой титрования уксусной кислоты едким натром (см, рис. 46) соответствует тем моментам, когда оттитрована (т. е. превращена в соль) только часть СНзСООН, а другая часть ее присутствует в свободном состоянии. Следовательно, смесь СНзСООН и СНлСООЫа представляет собой буфер, весьма медленно изменяющий значение pH при добавлении кислоты или щелочи. [c.280]

    Кривая титрования раствора ЫН40Н соляной кислотой (см. рис. 48), подтверждает, что буферным действием обладают также смеси слабых оснований с их солями, в данном случае ЫН40Н ЫН4С1, так как и здесь участок кривой титрования,, отвечающий присутствию этих веществ в растворе, будет пологим. Величина pH подобных смесей вычисляется по формуле [c.281]

    Гейровский, обнаруживший максимумы, обратил внимание на то, что максимумов обычно нет вблизи потенциала нулеиого заряда. Он предложил различат], положительные н отрнцательные максимумы в зависнмости от того, образуются ОНИ на восходящей или на нисходящей ветви электрокапиллярной кривой. Помимо этих максимумов — максимумов первого рода — были обнаружены другие, более пологие и расположенные вблизи п. и. з. — максимумы второго рода. Причины возникновения максимумов первэго и второго рода, как это вытекает из работ школы Фрумкина, связаны с потоками в ртутной капле, захватывающими ее поверхность и приводящими к энергичному размешиванию раствора вблизи капли, а следовательно, и к увеличению диффузионного тока. Появление потоков, в свою очередь, вызвано в случае максимумов первого рода неравномерностью поляризации капли у капилляра, из которого она вытекает, и в ее нижней части (рис, 15.12), а в случае максимумов второго рода — самим процессом ее формирования (рис. 15.13). [c.317]

    Поскольку вязкостно-температурные кривые вещества с различной химической структурой могут пересекаться, то возможны случаи, часто встречающиеся в практике, когда масло относительно невысокой определяющей вязкости, но обладающее крутой вязкостно-температурной кривой будет характеризоваться более высокой температурой вязкостного застывания, чем другое вещество более высокой определяющей вязкости, но с пологой вязкостно-температурной кривой. Следовательно, температура вязкостного застывания некристал лизующихся компонентов нефтяных масел зависит от тех же факторов, химической структуры, [c.37]

    Масла при охлаждении густеют, а при нагревании становятся более жидкими. Обычно при низких температурах кривая зависимости вязкости от температуры идет очень круто и незначительному изменению температуры соответствуют большие изменения вязкости с новьппением же температуры кривая становится все более пологой. Однако характер изменения вязкости различных нефтепродуктов колеблется в широких пределах для оценки эксплуатационного качества масел во многих случаях это имеет большое значение. Характер изменения вязкости масла при изменении температуры является одним из существенных свойств, определяющих возмож- [c.172]

    В значительной степени время до наступления питтинга-зависит от химического состава масла. Например, по рассматриваемому показателю масла на нафтеновой основе превосходят масла на парафиновой основе, что, по-видимому, связано с более пологой зависимостью вязкости масел первого тина от давления [272]. Вместе с тем масла на нафтено-нарафиновой основе по противопиттинговым свойствам более чем в 3 раза уступают маслам на ароматической основе. Синтетические масла в ряде случаев в 3,5—5 раз превосходят масла минеральные. В работе [272] было показано, что противопиттинговые свойства минеральных масел (время до образования питтинга равно т) ухудшаются с температурой в соответствии с зависимостью [c.253]

    Пенсильванская нефть представляет собой классический тип парафи-нистой нефти. Так как этой нефти добывалось больше всего, то она и была выбрана в качестве основы для сравнения [6, 18]. Эта нефть не содержит или почти не содержит асфальтовых компонентов, сера и азот содержатся только в виде следов, цвет со светлый, она обладает приятным запахом и малым удельным весом — около 0,810. Общий выход бензиновых и керосиновых фракций достигает 60%. Из нефти получаются более высококипящие фракции, а также парафин, выделяемый из остатка, петролатум и смазочные масла, обладающие относительно пологой температурной кривой зшзкости и высокой температурой кипения при данной вязкости. Переработка этой нефти сравнительно проста ввиду отсутствия в ней нежелательных примесей. Несмотря на то, что в настоящее время добыча ее незначительна (составляет 1% от общей добычи в США), эта нефть имеет весьма большое значение как сырье для высококачественных масел. [c.53]

    Формы характеристики Q—Н центробежных насосов бывают чрезвычайно разнообразными пологими, крутопадающими п возрастающими. Работа насосов протекает устойчиво во всех точках, находящихся па пепрерывно снижающейся части характеристики Q—Н. Возврастающие характеристики имеют вначале участок неустойчивой работы. Работа насосов при режимах, соответствующих этому участку характеристики, не допускается. [c.156]

    Важным качеством масла является степень пологости температурной кривой вязкости, показывающей изменение вязкости масла при изменении его температуры. Масло, имеющее пологую кривую вязкости, обеспечивает надежную работу узлов трения при высоких температурах и не создает большого сопротивления в каналах смазочных присиособленин при низких температурах. [c.176]

    Индекс вязкости является относительным числом, характеризующим пологость температурной кривой вязкости смазочных масел. Для определения этого показателя качества пользуются таблицей, разработанной Всесоюзным научно-исследовательским институтом по переработке нефти и газа и получению искусственного жидкого топлива. Названная таблица одобрена Государственным комитетом стандартов, мер и измерительных приборов при Совете Министров СССР в качестве руководящего технического материала. Чем выше индекс вязкости масла (ИВ), тем более иолога температурная кривая вязкости и тем лучше масло. [c.176]


Смотреть страницы где упоминается термин Пологены: [c.206]    [c.226]    [c.135]    [c.282]    [c.99]    [c.9]    [c.219]    [c.11]    [c.38]    [c.552]    [c.60]    [c.173]    [c.532]   
Химический энциклопедический словарь (1983) -- [ c.154 ]

Технология органических красителей и промежуточных продуктов (1980) -- [ c.319 ]

Применение красителей (1986) -- [ c.145 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.154 ]

Химия красителей (1979) -- [ c.131 , c.134 ]

Химия красителей (1981) -- [ c.119 ]

Химия красителей (1970) -- [ c.96 , c.97 , c.170 ]

Введение в химию и технологию органических красителей Издание 3 (1984) -- [ c.433 ]

Введение в химию и технологию органических красителей Изд 2 (1977) -- [ c.364 ]




ПОИСК







© 2025 chem21.info Реклама на сайте