Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкостно-температурная кривая

Рис. 75. Вязкостно-температурные кривые полигликолевых и минеральных масел Рис. 75. Вязкостно-температурные кривые полигликолевых и минеральных масел

    В зависимости от длины молекулярной цепи и структуры полигликолей вязкость их может изменяться в широких пределах от 6—8 до 10 ООО сст и более при 50° С. Полигликолевые масла отличаются от нефтяных масел лучшими противоизносными свойствами, низкой температурой застывания (от 55 до —65° С), высокими индексами вязкости (в пределах 135 180), малой испаряемостью. Полигликолевые масла не образуют смолистых соединений при повышенных температурах в присутствии кислорода, воздуха, выдерживают высокие температуры (до 300° С), не корродируют металлы, не вызывают набухание или размягчение синтетической и натуральной резины. Воспламеняются они с большим трудом, чем нефтяные масла. В табл. 34 приведены свойства масел на основе полигликолей, а на рис. 75 — их вязкостно-температурные кривые. На этом же рисунке для сравнения нанесены вязкостно-температурные кривые минеральных масел МК-8 и турбинного МК-22. Из рисунка видно, что полигликолевые масла имеют более пологую вязкостно-темпера- турную кривую, чем минеральные масла равной вязкости. [c.147]

Рис. 76. Вязкостно-температурные кривые масел Рис. 76. Вязкостно-температурные кривые масел
    Чем меньше масло меняет свою вязкость при изменении температуры, или, другими словами, чем по-ложе вязкостно-температурная кривая, тем выше качество масла. Это объясняется тем, что масло с пологой кривой вязкости при высоких температурах сохраняет достаточную вязкость для надежной смазки деталей двигателя, а при низких температурах вязкость такого масла не настолько велика, чтобы затруднить запуск двигателя и прокачку масла по трубопроводам. В спецификации на масла приводятся вязкости минимум при двух температурах и данные о пологости вязкостнотемпературной кривой или в виде величины отношения кинематической вязкости при низкой температуре (50° С) к вязкости масла при высокой температуре (100° С), или в виде индекса вязкости. [c.155]

    Онн должны обладать пологой вязкостно-температурной кривой и низкой температурой замерзания. Вязкость является одной из важнейших характеристик гидравлических жидкостей. Чрезмерное уменьшение вязкости при положительных температурах приводит к течи жидкости через различные соединения и уплотнения гидравлической системы, что вызывает потерю давления и замедляет действие агрегатов. Малая вязкость жидкости не позволяет ей предотвращать сухое и полусухое трение деталей гидравлической системы. Высокая вязкость жидкости приводит к увеличению сопротивления движению жидкости по трубопроводам, особенно при низких температурах. [c.212]


    Свойства диэфиров зависят от их химической структуры. С увеличением длины углеводородной цепи повышаются вязкость и температура застывания и уменьшается угол наклона вязкостно-температурной кривой. Циклические группы вызывают значительное повышение вязкости, но ухудшают вязкостно-температурные характеристики диэфиров. Введение в молекулу боковых цепей понижает температуру застывания (см. табл. 33) и ухудшает вязкостно-температурную характеристику диэфиров. Наибольшее распространение в качестве смазочных масел получают диэфиры изомерного строения. [c.144]

    Для масел, обладающих нри стандартизованных температурах близкими уровнями вязкости, решающее значение в отношении вязкостного застывания имеет пологость вязкостно-температурной кривой или индекс вязкости. Для низкоиндексных масел [c.13]

    Величина вязкостного застывания некристаллизующихся комнонентов зависит от величины их определяющей вязкости и от крутизны наклона вязкостно-температурной кривой. Чем выше определяющая вязкость, тем выше будет и температура вязкостного застывания данного вещества, поскольку более высокой определяющей вязкости нри данной крутизне наклона вязкостнотемпературной кривой отвечает более высокий уровень его вязкости нри всех температурах, вследствие чего возрастает и температура, при которой вязкость этого вещества достигает величины, соответствующей застыванию (3—4-10 сст). [c.37]

    Характеризуя крутизну наклона вязкостно-температурной кривой индексом вязкости, можно отметить следующие основные закономерности в его связи с химической структурой. [c.38]

    Тяжелые фракции, полученные полимеризацией этилена, обладают до некоторой степени крутой вязкостно-температурной кривой [627, 628], но с увеличением молекулярного веса реагирующего олефина индекс вязкости улучшается Если наряду с хлористым алюминием используется металлический алюминий, то при реакции с этиленом также получаются фракции с более высоким индексом вязкости [630, 631]. В этом случае условия благоприятны для образования правильных полимеров (димеров, тримеров, тетрамеров и т. д.). [c.140]

    II более пологую вязкостно-температурную кривую (лучшее отношение кинематических вязкостей при —20 и 50° С), что обеспечивает им хорошие пусковые свойства (табл. 8. 15). [c.457]

    Основные преимущества синтетических масел перед маслами нефтяными — их высокая термоокислительная стабильность, улучшенная смазочная способность, меньшая испаряемость при работе в двигателях, более пологая вязкостно-температурная кривая. Поэтому за рубежом синтетическим маслам для авиационных ГТД уделяют большое внимание [6]. [c.68]

    На рис. 4. 14 приведены вязкостно-температурные кривые безводного и содержащего до 15% воды крекинг-мазута [19]. При понижении температуры разница в вязкостях безводного и обводненного мазута будет еще более различаться. [c.248]

    Пологость вязкостно-температурной кривой очень важна. Этим показателем определяются пусковые свойства масел при низкой температуре и [c.368]

    Фторуглеродные масла имеют очень крутую вязкостно-температурную кривую. По вязкостно-температурной характеристике они уступают даже минеральным маслам (рис. 80) Плотность фторугле-родоБ в 2—3 раза выше плотности соответствующих углеводородов. Фторуглероды имеют более высокие температуры плавления, чем 152 [c.152]

    Трансмиссионное масло с пологой вязкостно-температурной кривой возможно получить а) загущением маловязкой основы высокополимерными загущающими присадками и б) смешением высоковязких нефтепродуктов с маловязкими. [c.430]

    К маслам для ТВД предъявляются следующие требования пологость вязкостно-температурной кривой и хорошая прокачиваемость при низких температурах  [c.472]

    Чем более полога вязкостно-температурная кривая топлива, тем при более низкой температуре оно может обеспечить нормальную работу данного двигателя. [c.56]

    Таким образом, облегчение фракционного состава и снижение вязкости дизельных топлив являются одним из наиболее перспективных путей получения зимних низкозастывающих сортов дизельных топлив. Одновременно с понижением температуры застывания топлива это обеспечивает более низкую температуру кристаллизации парафина и более пологую вязкостно-температурную кривую топлива. [c.133]

    Хорошими вязкостно-температурными свойствами обладают алканы и циклоалкано-алканы. С увеличением числа циклов в молекуле вязкость и крутизна вязкостно-температурной кривой повышаются [61]. Увеличение числа боковых цепей в молекулах ухудшает вязкостно-температурные свойства углеводородов. [c.21]

    Такил образом, с увеличением разветвленности молекулы парафинового углеводорода крутизна вязкостно-температурной кривой его несколько увеличивается. [c.113]

    П. П. Кобеко указывает, что повышение уровня вязкости при одновременном сохранении пологого хода вязкостно-температурной кривой, свойственного маловязкой жидкости, может быть достигнуто лишь путем введения в эту последнюю ... каких-то частиц, неизмеримо больших по величине, чем молекулы данной жидкости . В этом случае макроскопическая вязкость системы увеличится, температурный же ход вязкости останется тем же, так как уменьшение скорости течения жидкости будет обусловлено лишь уменьшением поперечного сечения свободного пространства. То же будет, если в качестве упомянутых частиц в растворе будут находиться молекулы растворенного веш,ества, во много раз (в сотни и тысячи) превышаюш,ие размеры молекул растворителя. Таким образом, для получения жидкости с очень малой температурной зависимостью вязкости следует выбирать растворитель с очень малым температурным коэффициентом, т. е. маловязкую жидкость, и повышать вязкость ее до необходимого уровня путем растворения в ней высокомолекулярного вещества [20]. [c.131]


    В табл. 156 приведены основные физико-химические свойства синтетических масел для воздушно-реактивных двигателей по сравнению с чисто нефтяным маслом сорта 1010. По таким важнейшим показателям, как пологость вязкостно-температурной кривой (индекс вязкости), температура вспышки и потери от испарения, преимущества синтетических масел перед минеральными совершенно очевидны [18, 28, 29]. [c.407]

    Как основа для загущения синтетические масла рассматриваемого класса имеют определенные преимущества перед минеральными. Более пологая вязкостно-температурная кривая, присущая диэфирам, сохраняется и после загущения их полимерами (рис. 121). [c.410]

    При загустевании масел ухудшаются их пусковые свойства и прокачиваемость в системе смазки. Эти показатели эксплуатационных свойств, характеризующие возможность применения -масел при низких температурах, называют низкотемпературными свойствами. Нижний температурный предел пуска холодного двигателя связан прежде всего с вязкостно-температурными свойствами моторных масел и обычно на 15—30 °С выше температуры их застывания. Так, вязкость авиационного масла МК-8 с понижением температуры резко возрастает, препятствуя нормальному пуску двигателя при температурах ниже 25 °С меньшую вязкость при —40 °С и более пологую вязкостно-температурную кривую по сравнению с МК-8 имеют масла МК-6 и МС-6, обладающие заметно лучшими пусковыми свойствами, что видно из следующих данных  [c.30]

    Характер и природа веществ, обусловливающих застывание нефтяных продуктов является различной для разных форм застывания. Вязкостное застывание вызывается веществами, вязкость которых нри охлаждении повышается до значительной величины вследствие либо высокого уровня их вязкости вообще, либо крутой вязкостно-температурной кривой (т. е. низкого индекса вязкости). Вязкость, при которой в условиях принятых методов онределения наступает вязкостное застывание, является вполне определенной величиной. Так, Д. С. Великовский [14] оценивает величину этой вязкости в пределах 2 10 — 6 10 сс/и, Хен-ненгофер дает для этой вязкости величину порядка 3 10 сст и т. д. [c.13]

    Содержание и состав парафиновых углеводородов в дистиллятных фракциях и остатках зависят от характера нефти и пределов выкипания фракции. По мере их повышения в масляных фракциях увеличивается общее содержание высокоплавких углеводородов. Удаление парафиновых и циклических углеводородов с длинными боковыми цепями кристаллизующихся при пониженных температурах, осуществляют в процессе депарафинизации с целью получения низкозастывающих масел. Парафиновые углеводороды по сравнению с другими имеют наименьшую вязкость, наиболее пологую вязкостно-температурную кривую и наибольший индекс вязкости (ИВ). Поэтому при удалении парафиновых углеводородов ухудшаются вязкостно-температурные свойства масел. Выделяемые при депарафинизации концентраты твердых углеводородов подвергают, в свою очередь, различным видам очистки для полу- [c.38]

    На практике часто используют вязкостно-температурные кривые (рис. 1.12 и 1.13). С повыщением температуры различие в вязкости топлив существенно уменьщается. [c.102]

    Моторные масла должны обладать максимально возможной пологой кривой зависимости вязкости от температуры. При высоких температурах эти масла не должны сильно разжижаться, а при низких, наоборот, — не терять текучести. Поскольку моторные масла в процессе очистки подвергаются деасфальтизации и депарафинизации, то их вязкостные свойства целиком зависят от строения и молекулярной массы полициклических нафтеновых, ароматических и гибридных парафино-нафтено-ароматических углеводородов. Наиболее крутой вязкостно-температурной кривой обладают полициклические углеводороды с короткими боковыми цепями, особенно если число колец в молекуле более трех, а сами кольца неконденсированные. Наличие длинных боковых насыщенных цепей в молекулах циклических углеводородов улучшает этот важный показатель. Разветвление цепей уменьшает положительный эффект. Вообще следует признать, что вязкостно-температурные свойства высокомолекулярных углеводородов нефти не соответствуют высоким требованиям, предъявляемым к современным моторным маслам. Особенно это относится к вязкостным свойствам при температурах ниже нуля. Поэтому начали получать распространение синтетические смазочные масла. Значительное улучшение вязкостных свойств смазочных масел достигается также путем применения присадок, повышающих вязкость дистиллятных масел. [c.95]

    Поскольку вязкостно-температурные кривые вещества с различной химической структурой могут пересекаться, то возможны случаи, часто встречающиеся в практике, когда масло относительно невысокой определяющей вязкости, но обладающее крутой вязкостно-температурной кривой будет характеризоваться более высокой температурой вязкостного застывания, чем другое вещество более высокой определяющей вязкости, но с пологой вязкостно-температурной кривой. Следовательно, температура вязкостного застывания некристал лизующихся компонентов нефтяных масел зависит от тех же факторов, химической структуры, [c.37]

    Относительно зависимости крутизны наклона вязкостно-температурной кривой углеводородов, характеризуемой, в частности, их индексом вязкости (ИВ), от химической стру1<туры их молекул также имеется многочисленная литература, что позволяет нам ограничиться кратким рассмотрением основных итоговых положений. В частности, данный вопрос подробно разбирается в работах, упоминавшихся выше при рассмотрении зависимости вязкости углеводородов от их химической природы, а также в работе Г. И. Фукса [12]. [c.38]

    Основная часть ароматических углеводородов, содержащихся в нефтяных дистиллятах, состоит из гибридных структур, т. е. имеет наряду с ароматическими также нафтеновые циклы и алкильные боковые цепи. Такие нафтено-ароматические углеводороды обладают большими значениями /плотности, показателя преломления и более крутой вязкостно-температурной кривой, чем обычные алкилароматические углеводороды. Нафтено-ароматические углеводороды различаются содержанием ароматических и нафтеновых циклов в молекулах и их расположением, а также числом и строением боковых цепей. Предполагается, что превалирующей структурой нафтено-ароматических углеводородов в исходных дистиллятах и готовых маслах является конденсированная, так как при гидрировании ароматических фракций до полного насыщения их водородом получены нафтеновые углеводороды с 6—8 циклами. В качестве примера таких гибридных па-рафино-нафтено-ароматических структур С. Р. Сергиенко [19] приводит соединения (I—V), высказывая предположение, что наиболее вероятны конденсированные структуры типов I и II (где м=1—5 и более)  [c.16]

    Мазуты практически одинаковой вязкости при температурах 50 С и выше, полученные из различных нефтей или разными методами, при понижении температур изменяют вязкость различно (рис. 4. 8). Мазуты прямой перегонки, беспарафиновые, из несернистого сырья имеют сравнительно пологую вязкостно-температурную кривую до 0° С и даже при температурах ниже О С вязкость их возрастает не особенно резко. Имея одновременно низкую температуру застывания, они достаточно легко транспортируются и перекачиваются при температурах около О С. Вязкость беспарафиновых крекинг-мазутов при понижении температуры увеличивается быстрее, чем мазутов прямой перегонки. Однако и крекинг-маззггы обычно сохраняют свою подвижность при тешгературах, близких к температуре застывания. С ростом вязкости при понижении температуры резко повышается предельное напряжение сдвига парафинистых мазутов [51] вследствие кристаллизации содержащихся в них высокоплавких, главным образом парафиновых углеводородов. Слив и перекачка парафинистых мазутов возможны только [c.238]

    Индекс вязкости в общем случае зависит от группового химического состава масла наиболее пологую вязкостно-температурную кривую имеют углеводороды парафинового ряда, а также циклические (нафтеновые и узомати-яеские) углеводороды с большим яислом углеродных атомов в боковых цепях. Значения индексов вязкости для дистиллятов автолов различного [c.369]

    Особенно пологой вязкостно-температурной кривой обладают моторные масла, полученные загуш ением маловязких дистиллятных масел полиме- [c.370]

    Так как изменение давления в системах, достигающее в некото ыд случаях значительных величин, может вызвать повышение или понижёвле температуры масла, необходимо, чтобы эти колебания рабочих температур в минимальной степени отражались на вязкости применяемого масла. Иначе говоря, гидравлические масла должны иметь высокий индекс вязкости, т. е. пологую вязкостно-температурную кривую. Исключение мог)гг составить системы, где возможно поддержание постоянной рабочей температуры масла и давления в системе. [c.493]

    Наиболее пологую вязкостно-температурную кривую имеют нормальные алканы, а наиболее крутую — арены. Вязкость разветвленных алканов незначительно больие вязкости их изомеров нормального строения и мало изменяется при понижении температуры. [c.51]

    Индекс вязкости — показатель, характеризующий вязкостно-температурные свойства масла. Чем выше индекс вязкости (ИВ), тем более пологой является вязкостно-температурная кривая масла в области плюсовых температур (т. е. тем менее значительно изменение режима смазки с изменением температуры). ИВ является важным товарным показателем масла, так как характеризует качество (глубину) его очистки — чем выше ИВ, тем лучше очищено масло. Вместе с тем, показатель ИВ не следует абсолютизировать, так как в значительной мере его значение зависит от углеводородной природы сьфья для производства масел. Так, из нефтей нафтенового основания производство базовых масел с высокими ИВ весьма затруднительно, что отнюдь не делает эти масла непригодными для выработки товарных масел определенного ассортимента. По индексу вязкости масла можно разделить на низкоиндексные (ИВ не выше 80), среднеиндексные (ИВ равно 80—90) и высокоиндексные (ИВ равно 90-95 и выше). В качестве компонентов базовых масел современного уровня качества используют базовые масла со сверхвысоким индексом вязкости (ИВ выше 100), представляющие собой продукты глубокой гидрокаталитической переработки нефтяного сырья. Учитывая важность и высокую информативность такого показателя, как индекс ИВ, Американский нефтяной институт (АР1) рекомендует классифицировать базовые масла по трем показателям индекс вязкости, доля нафтено-парафиновых углеводородов и содержание серы (табл. 10.2). [c.426]

    Полиорганосилоксановые жидкости обладают уникальными физико-химическими свойствами низкой температурой застывания, пологой вязкостно-температурной кривой, высокой термоокислительной и термической стабильностью, низкой упругостью пара и др. Поэтому они нашли применение в качестве основ и компонентов высокотемпературных авиационных масел и гвдрожидкостей. [c.434]


Смотреть страницы где упоминается термин Вязкостно-температурная кривая: [c.250]    [c.14]    [c.38]    [c.151]    [c.369]    [c.437]    [c.451]    [c.116]    [c.395]    [c.166]    [c.172]    [c.221]   
Вязкостные присадки и загущенные масла (1982) -- [ c.3 , c.40 , c.41 , c.42 , c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Нефтяные масла вязкостно-температурная крива

Температурные кривые



© 2025 chem21.info Реклама на сайте