Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

второго рода

    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    Таким образом, потенциал электрода второго рода определяется активностью анионов труднорастворимого соединения электродного металла. Электроды второго рода обратимы, однако, и по отношению к катионам электродного металла, поскольку их активности и активности анионов труднорастворимого соединения нахо- [c.162]


    Известно, что заместители первого рода (алкильные группы, галоиды, группы НО—и МНа—) определяют введение других групп в орто- и пара-положения, а заместители второго рода (—ЗОзН, —СООН, —N02, —СНО, — N), — в мета-положение. [c.285]

    Электроды второго рода [c.162]

    Из выражений (7.44) и (7.45) видно, что потенциал водородного электрода определяется не только активностью водородных ионов, но и парциальным давлением газообразного водорода. Следовательно, водородный электрод (так же как и другие газовые электроды) более сложный, чем электроды первого или второго рода, потенциалы которых зависят непосредственно от активности одного сорта частиц. Согласно определ гнию условной шкалы электродных потенциалов стандартный потенциал водородного электрода н+ 112 температурах принято равным нулю, поэтому [c.166]

    Кроме напряжения при электролизе нужно учитывать силу тока в цепи. По закону Ома в проводниках первого рода сила тока (/) прямо пропорциональна приложенному напряжению ( ) и обратно пропорциональна сопротивлению (Н). В случае растворов электролитов (в проводниках второго рода) следует принимать во внимание возникновение э. д. с. поляризации, которая противодействует прохождению тока, и потому при вычислении силы тока должна вычитаться из величины приложенного напряжения. [c.436]

    Более обоснованным представляется подход к рассматриваемому вопросу с точки зрения внутренней задачи теплообмена в системе каналов сложной формы. Имеются теоретические решения при Рг ж 1 для каналов с простой формой сечения [64]. Например, при граничных условиях третьего рода получено Nu3. min == 3,7 — для круглого сечения (труба), 3,0 — для квадратного сечения и 2,7 — для сечения, имеющего форму равностороннего треугольника. При граничных условиях второго рода эти величины несколько больше. По мере усложнения формы сечения каналов и увеличения доли угловых зон Nu . тш уменьшается. Для зернистого слоя можно ожидать Ыцэ. min A 2 при условии равномерного распределения газа по сечению слоя, что реально осуществимо только в правильных укладках одинаковых элементов. В работе [65] теоретически получено значение Nua. min = 2,6 для кубической укладки шаров. [c.142]

    Из схемы, приведенной на рис. 2, следует, что истинная электрохимическая система представляет собой цепь из последовательно включенных проводников первого и второго рода. С этой точки зрения электрический разряд в газах не может быть назван чисто электрохимическим процессом, так как газы в таких условиях обладают смешанной электронно-ионной проводимостью, и многие фундаментальные законы электрохимии к ним неприменимы. [c.14]


    Наряду с системами, для которых законы Фарадея оправдываются количественно, существуют и такие, где возможны отклонения от этих законов. Так, например, расчеты по законам Фарадея окажутся ошибочными в случае электролитической ванны, состоящей из двух платиновых электродов, погруженных в растнор металлического калия в жидком аммиаке. Такой раствор, как проводник со смешанной электропроводностью, обладает заметной металлической проводимостью, и значительная доля электронов в процессе электролиза способна непосредственно переходить с электрода в раствор, не вызывая никакого химического превращения. Подобные же явления наблюдаются при прохождении тока через газы. Одиако такие системы уже не будут истинными электрохимическими системами, состоящими только из проводников первого и второго рода. В истинных электрохимических системах переход электронов с электрода в раствор и из раствора на электрод обязательно связан с химическим превращением и, следовательно, полностью подчиняется законам Фарадея. Законы Фарадея, являясь, таким образом, естественным и неизбежным результатом самой природы электрохимического превращения, должны в то же время рассматриваться как наиболее надежный критерий истинности электрохимических систем. [c.282]

    Концентрационные цепи второго рода. Концентрационные цепи второго рода включают в себя два одинаковых электрода, погруженных в растворы одного и того же электролита различной активности . В зависимости от того, по отношению к каким ионам [c.197]

    Процесс, вызывающий появление э.д.с. в цепях такого рода, заключается в переносе электролита из концентрированного раствора в разбавленный концентрационные цепи второго рода называются поэтому также цепями с переносом. Существование между двумя растворами границы, через которую совершается перенос ионов и где локализуется диффузионный потенциал, позволяет определять их также как цепи с жидкостной границей. [c.198]

    Процесс образования з. д. с. в концентрационных цепях второго рода можно рассмотреть на примере анионной цепи. Пусть ai>an, тогда у левого электрода будет протекать реакция [c.198]

    Фазовые переходы второго рода [c.143]

    Следовательно, источником электрической энергии в данной концентрационной цепи является перенос /+ молей хлорида водорода от более концентрированного раствора к менее концентрированному. Из уравнений (7.7) и (9.7) получается следующее выражение для э.д.с. анионной концентрационной цепи второго рода  [c.199]

    Вторые производные изобарного потенциала при фазовых переходах второго рода изменяются скачкообразно (как и при переходах первого рода)  [c.143]

    Здесь Г( )= I л " интеграл Эйлера второго рода, называе-0 [c.119]

    Здесь Зд и) и Уд (м) - функции Бесселя соответственно первого и второго рода нулевого порядка. Для функции Q (Го) составлены таблицы и построен график (рис. 5.12, табл. 1 в прил. 1). [c.173]

    Функции У (0 и У (0 называются бесселевыми функциями соответственно первого и второго рода. Они определяются при помощи бесконечных рядов. График этих функций напоминает график тригонометрических функций с уменьшающимися амплитудой и периодом. Таблицы бесселевых функций имеются в книге Янке и Эмде , где вместо обычного обозначения применяется обозначение Ир. Решения многих уравнений первого и второго порядка можно выразить при помощи бесселевых функций .  [c.389]

    Техническими условиями на некоторые таблетирован-ные катализаторы предусмотрено определять их механическую прочность разрезанием или раздавливанием гранул на приборе типа десятичных весов со специальным ножом 3 23 Конструкция такого прибора показана на рис. 18. Он представляет собой рычаг второго рода [c.53]

    Следует подчеркнуть, что как положения Клаузиуса и Томсона, так и утверждение о невозможности перпетуум мобиле второго рода не доказываются на основании других законов или положений. Они являются предположениями, которые оправдываются всеми следствиями, из них вытекающими, но не могут быть доказаны для всех возможных случаев. [c.80]

    Как видно из рис. IV, 5, в некотором интервале температур вещество поглощает значительно большее количество теплоты, чем то, которое соответствовало бы кривой теплоемкости при отсутствии пика. Эта дополнительная теплота связана с превращением второго рода, но она поглощается в некотором ин- [c.143]

    МА + гe-=.M + A"-Уpaвнeниe для электродного потенциала электрода второго рода  [c.162]

    К фазовым переходам второго рода относятся многие превращения, весьма различные по природе фаз и характеру явления. К ним, например, относятся превращения ферромагнитных тел при температуре, называемой точкой Кюри, выше которой тела теряют ферромагнитные свойства превращение обычных металлов в сверхпроводники при низких температурах процессы распада и образования интерметаллических соединений в твердых металлических растворах и др. [c.144]


    Примером процессов, которые протекают в кристаллических телах и могут быть отнесены к фазовым переходам второго рода, являются процессы в кри- [c.144]

    Второй род полимеризации представлен так называемой эмульсионной полимеризацией. Процесс полимеризации протекает в эмульсии, состоящей, нанример, из 2 частей воды, 1 части мономерного стирола с 0,1% сульфата калия как катализатора, 0,5% КааН РаО,, выполняющего функцию регулятора, и 1% мыла как эмульгатора. Эмульсию затем разрушают при помощи муравьино кислоты, полимер отфильтровывают, промывают и сушат,. [c.239]

    Электроды второго рода представляют собой иолуэлемепты, состоящие из металла, покрытого слоем его труднорастворимого соединения (соли, оксида или гидроксида) и погруженного в раствор, содержащий тот же анион, что и труднорастворимое соединение электродного металла. Схематически электрод второго рода можно представить как [c.162]

    Учитывая, что активности металла М и твердого соед>1нения постоянны, уравнение нотенциала электрода второго рода можно упростить до [c.162]

    Здесь имеется два. электрода второго рода свинцово-сульфатный, обратимый по отношению к сульфат-ионам, и свинцово-диоксидный, обратимый по отношению к гидроксильным ионам, следовательно, как всякий металлоксидный электрод, и к ионам водорода. Токообразующие реакции в этом аккумуляторе записывают следующим образом  [c.202]

    Из соиоставлепия потенциалов соответствующих электродов первого и второго рода можно найти произЕ едение растворимости трудно растворимых солей. [c.163]

    Потенциалы электродов второго рода легко воспроизводимы и устойчивы. Этн электроды часто применяются в качестве стандартных полуэлементов или электродов сравнения, по отношению к которым измеряют потенциалы других электродов. Наиболее важны в практическом отношении каломельные, ртутносульфатные, хлорсеребряные, ртутнооксидные и сурьмяные электроды. [c.163]

    Однако реализовать кислородный электрод, поведение которого описывалось бы выведенными уравнениями, иа практике весьма трудно. Это обусловлено особенностями, отличающими все газовые электроды, и, кроме того, способностью кислорода (особенно во влажной атмосфере) окислять металлы. На основную электродную реакцию накладывается поэтому реакция, отвечающая метал-локсидному электроду второго рода. Даже на платине могут образовываться оксидные пленки, и поведение кислородного электрода не будет отвечать теоретическим ургвнениям эти отклонения проявляются, папример, в характере изменения потенциала с давлением кислорода. Кроме того, имеются основання полагать, что реакция иа кислородном электроде да ке в отсутствие поверхностных оксидов отличается от той, на которой основан вывод уравнения для потенциала кислородного электрода. По данным Берла (1943), подтвержденным и другими исследователями, часть кислорода восстанавливается на электроде не до воды, а до ионов пероксида водорода  [c.167]

    Аналогично выводится уравнение для э.д.с. катионной концентрационной цепи второго рода. Так, для г мальгамной цепи [c.199]

    Гейровский, обнаруживший максимумы, обратил внимание на то, что максимумов обычно нет вблизи потенциала нулеиого заряда. Он предложил различат], положительные н отрнцательные максимумы в зависнмости от того, образуются ОНИ на восходящей или на нисходящей ветви электрокапиллярной кривой. Помимо этих максимумов — максимумов первого рода — были обнаружены другие, более пологие и расположенные вблизи п. и. з. — максимумы второго рода. Причины возникновения максимумов первэго и второго рода, как это вытекает из работ школы Фрумкина, связаны с потоками в ртутной капле, захватывающими ее поверхность и приводящими к энергичному размешиванию раствора вблизи капли, а следовательно, и к увеличению диффузионного тока. Появление потоков, в свою очередь, вызвано в случае максимумов первого рода неравномерностью поляризации капли у капилляра, из которого она вытекает, и в ее нижней части (рис, 15.12), а в случае максимумов второго рода — самим процессом ее формирования (рис. 15.13). [c.317]

    Существоващю максимумов второго рода было использовано при создании полярографического адсорбционного метода анализа. Они обеспечивают лучшую, чем максимумы первого рода, воспроизводимость результатов и большую чувствительность метода. Так, присутствие в растворе н-октилового спирта (вплоть до 6-10 моль/л) не сказывается на высоте максимума первого рода, наблюдаемого при восстановлении кислорода. В то же время высота кислородного максимум.1 второго рода уменьшается вдвое в том случае, если раствор содержит всего 3-10 моль/л этого спирта. [c.318]

    Рис. [V, 5, на котором представлена зависимость теплоемкости жидкого гелия от температуры вблизи абсолютного нуля (Кезом и Клузиус, 1932), показывает такое скачкообразное изменение теплоемкости, происходящее пр превращении двух модификаций жидкого гелия при 2,2 °К (это превращение относится к переходам второго рода) .  [c.143]


Смотреть страницы где упоминается термин второго рода: [c.160]    [c.164]    [c.195]    [c.198]    [c.203]    [c.205]    [c.318]    [c.482]    [c.488]    [c.175]    [c.249]    [c.323]    [c.80]   
Электрохимическая кинетика (1967) -- [ c.35 , c.45 , c.56 , c.800 ]




ПОИСК







© 2025 chem21.info Реклама на сайте