Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций, определение в биологических объектах

    Кислотный хром темно-синий применен также для фотометрического определения кальция в биологических объектах [655, 748, 1657], чугуне [1316], металлическом титане [987]. Используется также для косвенного фотометрического определения кальция эриохром черный Т [1351, 1546, 1663]. [c.100]

    Этим способом был определен кальций (5-10 —1 10" %) в воде [57], соляной, серной и фтористоводородной кислотах [56] в КС1 (5-10" %), винной кислоте [54, 57]. Разработаны также методы определения кальция с флуорексоном в биологических объектах [811, 1062, 1116], шлаках [581]. [c.56]


    Флуоресцентное определение кальция с флуорексоном используют при анализе биологических объектов [1092, 1170]. [c.103]

    Наиболее эффективно увеличивают эмиссию кальция 1-пентен, изопропиловый эфир, толуол, гептан и циклопентан [818]. Хорошие результаты получены при использовании ацетона. Часто в водный раствор для увеличения чувствительности при определении каль ция добавляют этанол [913, 1566], метанол, изопропанол, бутанол [787] и другие спирты. Рационально применение не индивидуальных растворителей, а смесей различного состава при анализе биологических объектов наиболее эффективной считается смесь ацетона с уксусной кислотой, при определении следовых количеств кальция в хлориде лития рекомендуют смесь метанола, бутанола и воды [873]. [c.138]

    Существуют общие приемы, позволяющие повысить специфичность определения кальция по фотометрии в пламени, например предварительное выделение кальция в виде оксалата. После растворения оксалата кальция в соответствующей минеральной кислоте раствор фотометрируют [1021]. Этот прием используют обычно при анализе биологических объектов (кровь, сыворотка) и устраняют главным образом мешающее действие щелочных металлов. Иногда кальций осаждают оксалатом в присутствии комплексона [c.139]

    Определение в биологических объектах. При определении кальция в крови удаляют протеины и к сыворотке крови добавляют маскирующий агент (комплексон III [1642], соли стронция [c.152]

    Метод атомно-абсорбционного спектрального анализа, несмотря на ряд преимуществ, еще не нашел широкого распространения в гигиенических исследованиях. В литературе имеются данные об определении при помощи этого метода микроэлементов в почвах [7], паров ртути в воздухе [8], рубидия [3], кадмия и цинка [9], ртути в моче [10], свинца [И] и нике.чя в биологических материалах, кадмия в биологических объектах [12], кальция в почве, марганца в морской воде [13] и др. [c.517]

    Определение содержания бериллия в моче и других биологических объектах [78, 80, 96]. При определении бериллия в моче (или иных биологических объектах) взятую пробу нагревают с азотной кислотой, выпаривают досуха, прокаливают остаток при 500° С, растворяют в соляной кислоте и осаждают кальций в виде сульфата. К фильтрату добавляют аммиак и фосфатный реагент, содержащий фосфорную кислоту, железоаммонийные квасцы и серную кислоту. Выделившийся осадок, содержащий весь бериллий, отделяют центрифугированием, промывают, растворяют в серной кислоте и подвергают электролизу для удаления железа. К свободному от железа раствору добавляют раствор соли алюминия и осаждают фосфат бериллия. Осадок растворяют в едком натре, центрифугируют, через 15 мин разбавляют дистиллированной водой и, добавив раствор хлорида двухвалентного олова (для стабилизации свечения), приливают раствор морина и измеряют интенсивность люминесценции, сравнивая ее с люминесценцией стандартного раствора соли бериллия (принимаемой за 100%) и раствора алюмината (принимаемой за 0%)- Оба раствора готовят одновременно с проведением анализа. [c.220]


    Надежность результатов можно оценить по следующим данным. В срезах биологических объектов толщиной около 10 мк абсолютные ошибки в определении лежат между 0,15 и 0,2 пг на 1 мк для кальция от 0,06 до 0,1 пг на 1 мк для фосфора и серы. Этим абсолютным ошибкам, как правило, соответствует относительная ошибка, не превышающая 5% от количества элемента, присутствующего в образце. [c.317]

    По другому варианту можно определять кальций после осаждения его хлораниловой кислотой фотометрированием окраски раствора, полученного после растворения осадка хлоранилата кальция. Осадок растворяют в 5%-ном растворе комплексона III [815, 908, 1010, 1502] и фотометрируют розовую окраску при 520—530 [815, 1502] или 650 нм. В этих условиях определения не мешают даже 10 г Mg/д [1502]. Метод точен и результаты хорошо воспроизводимы [908]. Вместо комплексона III рекомендуют [1617] применять 50%-ный изопропанол, растворенный в 0,6%-ном растворе Fe lg. Розовую окраску затем фотометрируют при 480—500 нм. Метод, основанный па использовании в качестве реагента хлораниловой кислоты, применен при определении кальция в биологических объектах [815, 879, 908, 909, 1010, 1502, 1559, 1617] почвах [1383] почвенных вытяжках и золе растений [1143] растительных материалах [1580] пищевых продуктах [746] и воде [1131, 1143, 1164] глиноземе [1064]. [c.97]

    При анализе биологических объектов (кровь, моча) применяют нефелометрический метод определения кальция с олеатным реактивом [940]. [c.102]

    Влияние катиоиов. Щелочные металлы в пламени возбуждаются гораздо легче, чем щелочноземельные, поэтому, несмотря на то что кальций в большинстве случаев фотометрируется в пламени по узкой спектральной линии (4270 А), они завышают содержание определяемого компонента [933]. 13а излучение кальция накладывается в некоторой степени линия натрия и сплошное излучение калия [499]. При определении кальция влияние натрия более значительно, чем влияние калия. Некоторые объекты, содержащие сравнительно небольшое количество щелочных металлов по сравнению с кальцием, могут анализироваться непосредственно без введения соответствующих поправок на излучение примесей. Отмечается сильное влияние натрия при анализе объектов с высоким содержанием щелочных металлов хромитовая шихта [70], руды [225[, биологические объекты, морская вода [791], питьевая вода [1318] и др. Калий сильно мешает при анализе растений. [c.139]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Описаны радиометрические методы определения Са в биологических объектах [264, 1137, 1295]. Предложен метод онреде-лоння кальцпя путем радиохимического вытеснения радиоизотопов °Со, %1п из осадков соответствующих оксалатов [741, 7431. Радиометрические методы применяются и прп определении кальция в неорганических материалах [65, 961, 1525, 1623[. Оппсано применение масс-спектрального метода для определения кальция в высокочистых металлах и материалах [373, 1400, 1471[. Для определения некоторых соединений кальция используют инфракрасную спектроскопию [21]. [c.156]

    Описаны методы количественного определения кальция после обогащения образца хроматографированием на бумаге в бронзах и цинковых сплявах [12741, доломитах, стронцитах, баритах и калъцигах [10231, биологических объектах [864]. [c.187]

    Такие острофокусные трубки были разработаны для проекционной рентгеновской микроскопии (см. ниже). Они были использованы также для дифференциальной абсорбциометрии по обе стороны от края поглощения (см. 5.4), как показано на рис. 110. В этой схеме образец помещается прямо против точечного источника рентгеновского характеристического излучения, а его увеличенное изображение после отражения от изогнутого анализирующего кристалла проектируется на окно пропорционального счетчика. Длины волн, возбуждающие образец, определяются материалом использованной мишени, и для каждой задачи они могут быть подобраны специально. Ошибки, создаваемые дрейфом источника рентгеновского излучения, исключаются небольшим равномерным и частым покачиванием кристалла таким образом, что от него отражаются лучи двух длин волн, расположенных по обе стороны от края поглощения. С помощью такой схемы было выполнено определение кальция на участке диаметром 10 juk в срезе биологического объекта. Надежность результатов составляет несколько процентов от найденного количества кальция на площади указанного размера (2-10" г и даже меньше). [c.309]


    Определение кальция в кале и пище. Для определения кальция в пище и кале и любых биологических объектах необходимо их сначала озолить. Так как соли кальция нелетучи, то озоление можно вести сухим путем, что очень упрощает работу. [c.270]

    Наиболее важное применение кальцийселективные электроды находят при анализе медико-биологических объектов, в особенности для определения ионов кальция в сыворотке крови. Пионерской работой в данной области послужила работа Мура [149] (см. также [ПО, Ш]). В настоящее время для определения ионов кальция в сыворотке крови применяют специальные автоматические анализаторы с пластифицированным кальцийселективным ИСЭ в качестве сенсора. Измерения проводят обычно с периодической калибровкой электрода и термо-статированием анализируемого раствора при 37 °С. Необходимо отметить, что кальциевый электрод чувствителен только к активности свободных ионов кальция в водной фракции сыворотки. Содержание этого компонента р (в мл Н2О на 100 мл сыворотки) определяется с помощью следующего выражения [218]  [c.224]

    Обычно мешающее действие железа при пламеннофотометрическом определении кальция проявляется при анализе сплавов на железной основе и силикатов. Анализ биологических материалов и других маложелезистых объектов удается без особых затруднений. [c.141]


Смотреть страницы где упоминается термин Кальций, определение в биологических объектах: [c.152]    [c.166]    [c.198]    [c.198]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.309 , c.316 , c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Биологические объекты, определение

Кальций определение

Определение объекта



© 2025 chem21.info Реклама на сайте