Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетон выделение из смеси

    МЕТИЛОВЫЙ СПИРТ (метанол, карбинол, древесный спирт) — простейший представитель предельных одноатомных спиртов, бесцветная подвижная жидкость с характерным запахом, т. кип. 64,5 С смешивается с водой во всех отношениях, а также со спиртами, бензолом, ацетоном и другими органически-ии растворителями. Впервые М. с. выделен в 1834 г. Ж. Дюма и Э. Пелиго из продуктов сухой перегонки древесины. Основной современный способ производства М. с.— синтез его из водорода и оксида углерода. Сырьем служат природный, коксовый и другие газы, содержащие углеводороды (напр1шер, синтез-газ), а также кокс, бурый уголь, из которых получают смесь На и СО2 в соотношении 1 2. М. с. синтезируют при 300—375° С и 39 10 Па на катализаторе 2пО СГ2О3. Небольшие количества М. с. выделяют из подсмольной воды при сухой перегонке древесины. М. с. перерабатывают в формальдегид, добавляют к моторным топливам для повышения октанового числа, используют для приготовления растворителей, метакрилатов, диметилтерефталата (производство синтетического волокна лавсан) применяют в качестве антифриза, а также в производстве галогеналкилов. М. с. сильно ядовит, 5—10 мл М. с. приводят к тяжелому отравлению, 30 мл и более — смертельная доза. Поражает сетчатку глаз. [c.161]


    При взрыве сорвало крышку мерника, были деформированы другие аппараты и коммуникации и выбиты стекла в производственном помещении и пункте управления. Взрыв произошел при случайном смешении меланжа (смесь азотной и серной кислот) с органическим растворителем (по всей вероятности, с ацетоном), который оказался в мернике в момент заполнения его меланжем. При подго-товке производства к пуску после длительной консервации оборудование и коммуникации промывали органическим растворителем. После промывки мерник был просушен вакуумированием, однако качество осушки аппарата не было проконтролировано. Через 5 мин после начала заполнения сборника меланжем в соединениях шланга, связывающего сборник с наполнительным трубопроводом, началось обильное выделение окислов азота, после этого последовал взрыв. [c.362]

    Депарафинизация осуществляется путем выделения при охлаждении твердых углеводородов из депарафинируемого продукта. В качестве растворителя применяют метилэтилкетон или ацетон в смеси с бензолом или толуолом, который добавляют в определенных соотношениях, выдерживают смесь при 50° С до получения прозрачного раствора, охлаждают до комнатной температуры, а затем выдерживают при заданной низкой температуре, отфильтровывают твердый остаток и отгоняют растворитель от фильтрата. [c.190]

    Из водных растворов полимеры, как правило, выделяют при осаждении в спирт, ацетон или смесь метанол — эфир. Для выделения полимера из водной эмульсии, которое часто бывает трудно осуществить, применяют следующие методы разведение раствора водой с одновременным добавлением электролита, вымораживание, а также впрыскивание раствора в спирт или ацетон. [c.66]

    Методы экстракции применяют только для выделения элементной серы. Они основываются на свойстве серы растворяться в органических растворителях. В качестве экстрагентов использованы сероуглерод [488, 1225], хлороформ [1142], ацетон [576], смесь (4 1) бензола и ацетона [750, 1109] и метиловый спирт [426]. [c.56]

    На рис. 20-23 показана схема экстрактивной перегонки для разделения бутана (НК) и псевдобутилена (ВК), причем растворителем служит ацетон. Исходная смесь вводится в среднюю часть экстракционной колонны 1. Ацетон подается выше ввода смеси. Часть колонны выше ввода ацетона орошается бутановой флегмой из дефлегматора 2 и служит для выделения из паров остатков ацетона. Остаток, представляющий собой смесь псевдобутилена и ацетона, разделяется в отгонной колонне 3, причем псевдобутилен переходит в дестиллат, а ацетон —в остаток. Из куба отгонной колонны ацетон возвращается в экстракционную колонну. [c.500]

    Для получения масел с низкой температурой застывания используют процесс депарафинизации, в результате которого из масляного сырья удаляются твердые углеводороды. Наиболее распространенным методом выделения твердых углеводородов из нефтяного сырья является депарафинизация с помощью селективных растворителей, основанная на разной растворимости нефтяных углеводородов в растворителях. Для этой цели в практике применяют кетон-ароматическую смесь растворителей (метил-этилкетон и толуол или ацетон и толуол), взятых в различных соотношениях — от 30 до 60 % (масс.) кетона и от 70 до 40 % (масс.) толуола. [c.80]


    Типичный процесс образования дифенилолпропана протекает так. После смешения фенола с ацетоном и добавления катализатора в первое время смесь остается прозрачной и однородной, так как смешанные компоненты взаимно растворяются. Однако по мере протекания реакции жидкость становится густой и менее подвижной вследствие выделения кристаллов, а затем застывает в сплошную кристаллическую массу, цвет которой изменяется от белого до желтого или оранжевого. По окончании реакции непрореагировавшие компоненты и катализатор удаляют, отмывая водой, отгоняя с водяным паром, ректификацией или другими методами (выбор метода в значительной мере определяется типом используемого катализатора). Полученный дифенилолпропан очищают затем от примесей. [c.63]

    Если смесь, которую нужно разделить вымораживанием, обладает повышенной вязкостью, мешающей кристаллизации, к этой смеси добавляют подходящий растворитель. Растворитель должен быть легко летучим (этан, пропан, диметиловый эфир, ацетон), что обуславливается необходимостью его последующего удаления, Примером. может быть выделение парафиновых углеводородов нормального строения пз масляных фракций. [c.13]

    Разделение продуктов реакции может быть осуществлено так же (см. гл. IV), как в случае синтеза дифенилолпропана конденсацией фенола с ацетоном. При использовании катализаторной системы фтористый бор -ь ортофосфорная кислота сначала реакционную смесь нейтрализуют содой или гидроокисью кальция, а затем с паром отгоняют фенол . Соединения фтористого бора с уксусной кислотой и с диэтиловым эфиром можно отогнать вместе с фенолом в вакууме . Применим также способ выделения дифенилолпропана из реакционной массы в виде кристаллического аддукта с фенолом, который разрушают методами, описанными в гл. IV. Иногда реакционную массу разбавляют водой и отделяют водный слой, содержащий катализатор, от органического, который состоит из фенола, дифенилолпропана и побочных продуктов. Затем из органического слоя отгоняют фенол. [c.97]

    Полученная смесь фенола и ацетона нейтрализуется раствором щелочи и подвергается последовательной ректификации для выделения целевых продуктов—фенола и ацетона, а также получающихся побочных продуктов а-метилстирола, ацетофе-нона и сложного фенола (кубовый остаток). [c.309]

    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]

    Часть колонны выше ввода ацетона орошается бутановой флегмой, поступающей из дефлегматора 2, и служит для выделения из паров остатков ацетона. Остаток, представляющий собой смесь псевдобутилена и ацетона, разделяется в отгонной колонне 3, причем псевдобутилен переходит в дистиллят, ацетон — в остаток. Из куба отгонной колонны ацетон возвращается в экстракционную колонну. [c.709]

    Разработка промышленного процесса выделения мезитилена из его смесей с ароматическими углеводородами Сд методами ректификации, кристаллизации, сульфирования и др. связана со значительными трудностями, и технико-экономические показатели такого производства могут быть на низком уровне. Поэтому были проведены исследования по синтезу мезитилена изомеризацией псевдокумола и дегидроконденсацией ацетона. При изомеризации псевдокумола в присутствии гетерогенных катализаторов получают смесь метил-производных бензола с концентрацией мезитилена, близкой к термодинамически возможной. Этилтолуолы, особенно о-этилтолуол, которые затрудняют выделение мезитилена из продуктов реакции ректификацией, в этих условиях не образуются. [c.218]

    Для выделения кетена газы пиролиза ацетона необходимо очень быстро охладить, чтобы предотвратить процессы разложения или полимеризации. В одном из методов резкое охлаждение осуществляют впрыскиванием в газы избытка уксусной кислоты, которая образует с кетеном уксусный ангидрид. После прохождения через сепаратор парогазовая смесь, имеющая температуру 150° и содержащая все еще некоторое количество кетена, подвергается охлаждению в конденсаторах, причем присутствующий кетен реагирует с избыточной уксусной кислотой, превращаясь в уксусный ангидрид. Затем смесь уксусной кислоты, уксусного ангидрида, ацетона и других примесей перегоняют, чтобы выделить ангидрид, а также уловить и возвратить в процесс непрореагировавшие ацетон и уксусную кислоту. [c.324]


    Задание 8. Разделить простой перегонкой двухкомпонентную смесь ацетон-н-октан н-гептан-н-нонан, ацетон-толуол... Проанализировать на хроматографе исходную смесь и выделенные соединения, вычислить чистоту и степень выделения. [c.47]

    Сырье — сжиженная смесь аммиака и ацетилена, ацетон и раствор катализатора целочной природы поступает в реактор 1, температура в котором находится в пределах 10—40 °С (давление 2,0—2,5 МПа). Реакцию ведут при некотором избытке аммиака для того, чтобы исключить образование продуктов конденсации ацетона. Реакционная смесь направляется в стоппер-реактор 2, куда подается специальный реагент, дезактивирующий катализатор и прерывающий таким образом процесс. Далее продукты реакции поступают в газосепаратор 3, где давление дросселируется до атмосферного. Выделяющийся в виде паров аммиак совместно с непрореагировавшим ацетиленом компримируется и возвращается в реактор ], а смесь жидких продуктов подается на ректификационную колонну 4. В качестве погона этой колонны отбираются остатки непревращенного ацетона, также возвращаемого на синтез. Кубовый продукт направляется на колонну выделения ацетиленового спирта 5. Поскольку вместе с катализатором и стоппером в систему вводилась вода, синтезированный продукт отгоняется в виде гомогенного водного азеотропа, т. е. в сравнительно мягких условиях. Выделенный азеотроп ацетиленового спирта непосредственно направляется на гидрирование. Из куба колонны 5 выводится водный раствор продуктов разложения катализатора. [c.382]

    К определенному объему V полученного раствора (например, 5 мл) добавляют разные количества А раствора неакгивного КН4Вг в ацетоне, разбавляют смесь чистым растворителем до 50 мл и затем проводят анодное выделение брома на серебряном микроэлектроде при вращении мешалки, пропуская ток силой 50 — 500 мка в течение 24 сек. В этих условиях осаждается около 0,5% брома, содержащегося в растворе. Активность осадков, выделенных из растворов с различными добавками неактивного носителя А (от О до 1844 мкг), измеряют па проточном пропорциональном счетчике, вводят поправки на распад Вг, фон и потери за счет мертвого времени счетчика По полученным величинам вычисляют удельную активность, отнесенную к 1 мккул пропущенного электричества. [c.160]

    Затем акролеин смешивают с изопропиловым спиртом при мольном соотношении 1 2-6 и после подогрева смесь вводяп в реактор, содержащий магний-цинковый катализатор. При температуре 380-400 в жидкой фазе происходит восстановление акролеина в аллиловый спирт и окисление изопропилового спирта в ацетон. Выделенный и очищенный аллиловый спирт далее гидроксилиру-ют пероксидом водорода при температуре 30 100 °С в присутствии вольфрамовой кислоты или ее солей. Выход образовавшегося глицерина при этом составляет 80-90 %. [c.11]

    Одиовремеппо непредельное соединение растворяют в воде, ацетоне или другом желательном растворителе. Оба раствора смешивают п прибавляют хлорид (или бромид) меди (II) (0,07—0, 5 моля) в виде дигидрата. На этой стадии может оказаться необходимым добавление воды или ацетона, чтобы смесь стала гомогенной. Немедленно после этого или после короткого индукциошюго периода начинается выделение азота. Если же азот не выделяется, то раствор медленно нагревают до той температуры, при которой начнется выделение азота обычно это происходит около 25°. Как правило, пет необходимости прибегать к перемешиванию. Как только реакция начнется, для ее регулирования иногда бывает необходимо несколько охладить смесь. При сильном охлаждении течение реакции может прекратиться, и в этом случае инициировать ее снова бывает весь.ма трудно. В тех случаях, когда реакция прекращается, для ее [c.224]

    Растворимость фенилозотриазолов сахаров в воде и органических растворителях изменяется в очень дпироких пределах ниже приведены два способа выделения различающихся по растворимости озотриазолов. Помимо воды и бензола, для перекристаллизации фенилозотриазолов применялись также ацетон, хлороформ, смесь хлороформа с гексаном, эфир, этиловый и метиловый спирты. [c.82]

    Исследуемая фракция в количестве 2,246 г по каплям добавлялась к смеси серной и дымящей азотной кислот (2—1). После этого смесь нагревалась на водяной бане в продолжение нескольких часов и после охлаждения переносилась в чашку с водой и оставлялась на ночь. Образовавшееся нигросоединение состояло из двух фаз (желтая маслянистая жидкость и кристаллы). Обработкой этиловым эфиром был выделен белый, в эфире нерастворимый осадок, который перекристаллизовывался из бензола и ацетона. После перекристаллизации из ацетона выделились белые, блестящие кристаллы с температурой плавления 171 —173°. В бензоле растворимый осадок плавился при температуре 166—167°. [c.80]

    Схема регенерации кетон-бензол-толуоловых растворителей, в которых в качестве кетона используют метилэтилкетон, аналогична описанной выше. При этом несколько изменяется режим процесса в сторону повышения температуры на первых ступенях отгона, поскольку температура кипения металэтилкетона выше, чем ацетона (79,6° при 760 мм рт. ст. против 56,1° для ацетона), г Если на депарафинизационной части установки применяют / МЭК в тех случаях, когда нельзя пользоваться влажным растворителем, операция осушки растворителя усложняется вследствие затруднений с получением безводного МЭК. Эти затруднения вызываются тем, что МЭК с водой образует азеотропную смесь, близкую по составу к насыщенному раствору воды в жидком МЭК. Так, количество воды в этой азеотропной смеси составляет 11,0%, а растворимость воды в жидком МЭК при 20" равна 9,9%. При такой близости составов азеотропной смеси и насыщенного раствора нельзя разделять эту азеотропную смесь при помощи процесса, рассмотренного для регенерации дихлор-этап-бензолового растворителя. Поэтому для выделения МЭК применяют другие методы разделения, в частности, орошение паров азеотропной смеси сырьем, поступающим на депарафинизационную часть установки, с целью абсорбции МЭК, хорошо растворимого в нефтяных продуктах. Возможна осушка смеси МЭК с бензолом и толуолом путем вымораживания влаги. [c.244]

    Образование твердых молекулярных соединений нормальных алканов (или нормальных олефинов) с карбамидом и последующая регенерация и выделение компонентов проводятся но методу, который теперь широко применяется в лабораториях нефтеперерабатывающей промышленности для выделения нормальных алканов (или нормальных олефинов) из нефтяных фракций [123, 124]. По этому методу карбамид добавляется к нефтяной фракции в присутствии растворителя, такого как ацетон или метанол, причем смесь интенсивно перемешивается. Образуется кристаллический осадок твердого соединения карбамида с нормальнылш алканами. Это соединение выделяется путем фильтрации и разлагается при добавлении теплой воды для восстановления нормальных алканов. Другие углеводороды могут быть выделены пз раствора при удалении метанола или ацетона водой. Процесс был разработан на стадии полузаводских испытаний [125] и может иметь значение для производства нормальных алканов. Улучшение реактивных топлив таким способом обсуждали Хенн, Бокс и Рэй [126]. [c.290]

    Как известно, процессы депарафинизации и обезмасливаиия можно проводить в чисто углеводородных растворителях, таких как пропан и гептан. Эти растворители характеризуются высокой растворяющей способностью по отношению к твердым углеводородам, что требует глубокого охлаждения при производстве низкозастывающих масел, а отсюда — высокий ТЭД. В литературе [68, с. 183] имеются сведения о переводе промышленной установки депарафинизации в пропановом растворе на смесь пропилен — ацетон. Такой процесс позволяет депарафинировать сырье любой вязкости и получать масла с температурой застывания от —20 до —25 °С. Добавление ацетона к углеводородному растворителю снижает его растворяющую способность, что обеспечивает более полное выделение твердых углеводородов из раствора при снижении ТЭД до 10—15 °С. Растворитель одновременно служит и хладоагентом, причем его испарение происходит с определенной скоростью, для чего на установке предусмотрен автоматический контроль охлаждения суспензии твердых углеводородов. Во избежание обводнения ацетона, энергично поглощающего воду, существует секция для отделения воды. [c.158]

    Для выделения нормальных парафиновых углеводородов 13 — Gj, из легкой газойлевой фракции нефти применялась следующая методика. К смеси, состоявшей из 2,8 л ацетона и 1, л деароматизированной (парафин-циклонарафиновой части) легкой газойлевой фракции нефти, содержащей около 29% объемн. нормальных парафиновых углеводородов, постепенно добавляли небольшими порциями 1050 з мочевины. Смесь 1 час энергично перемешивали, чтобы не дать возможности твердому веществу выпасть в виде осадка. После этого твердую часть отделяли фильтрованием на широкой воронке с отсосом. [c.521]

    Влияние характера разделения смол но описанной выше методике видно из данных, приведенных в табл. 17. При хроматографическом разделении смол, выделенных из сырых нефтей и твердых природных битумов, наблюдаются следующие закономерности в изменении элементного состава фракций смол, полученных десорбцией с силикагеля в следующем ряду элюентов четырххло-ристый углерод—бензол—ацетон—спирто-бензольная смесь. Фракция смолы, извлекаемая четыреххлористым углеродом, характеризуется минимальным содержанием гетероатомов (S, О, N) обычно в пределах 3—5%, лишь в отдельных случаях до 5—8,5%. Весовое отношение С/Н колеблется в пределах 8—8,6. Это фракция [c.61]

    В колбу вместимостью 50 мл, содержащую раствор 2 р гидроксида натрия в 20 мл воды и 16 мл этанола, при тщательном перемешивании приливают половину заранее приготовленной смеси бензальдегида и ацетона, поддерживая температуру 20—25 °С. Через 2—3 мин начинается выделение осадка. Спустя 15 мин при перемешивании в колбу приливают оставшуюся смесь бензальдегида и ацетона, смывают остатки этих веществ из колбы, в которой они находились, спиртом (2—3 мл). Массу перемешивают еще 20 мин, отсасывают, тщательно промывают осадок водой и сушат на воздухе. После перекристаллизации из этилацетата получают чистый дибензилиденацетон. Т. пл. 112 °С. Выход 1,8 г (77 %). [c.104]


Смотреть страницы где упоминается термин Ацетон выделение из смеси: [c.76]    [c.224]    [c.156]    [c.198]    [c.380]    [c.141]    [c.649]    [c.581]    [c.335]    [c.203]    [c.65]    [c.65]    [c.77]    [c.453]    [c.313]    [c.306]    [c.190]    [c.304]    [c.232]    [c.241]    [c.48]    [c.404]   
Руководство по газовой хроматографии (1969) -- [ c.86 , c.243 , c.328 ]

Руководство по газовой хроматографии (1969) -- [ c.86 , c.243 , c.328 ]

Руководство по газовой хроматографии (1969) -- [ c.86 , c.243 , c.328 ]




ПОИСК







© 2024 chem21.info Реклама на сайте