Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Самопроизвольное диспергирование агрегата частиц

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Для характеристик взаимодействия между веществом дисперсной фазы и жидкостью дисперсионной среды служат понятия лиофиль-ность и лиофобность . Лиофильные дисперсные системы отличаются взаимодействием частиц со средой, самопроизвольным диспергированием и термодинамической устойчивостью. Если в качестве жидкой дисперсионной среды используется вода, то системы называют гидрофильными. Примерами лиофильных коллоидов могут служить глины, мыла, агрегаты высокомолекулярных соединений и т. п., образующие в водной или полярной среде неограниченно устойчивые дисперсные системы. [c.135]

    Рост величины бентонита в дистиллированной воде (табл. 44) можно объяснить следующим образом. При контакте бентонита с водой происходит связывание воды поверхностью агрегатов и первичных глинистых частиц. Это приводит к самопроизвольному диспергированию глинистых частиц. Проникновение воды к внутренним поверхностям частиц постепенно затрудняется образующимся слоем твердой адсорбированной воды. В набухшей при атмосферном давлении пробе глины остаются неполностью гидратированные участки, находящиеся под слоем твердой воды внутри первичных частиц. [c.74]

    Как известно, золи по размеру частиц дисперсной,фазы зани- мают промежуточное положение между истинными растворами и суспензиями, поэтому, естественно, они могут быть получены либо путем сЗ"единения отдельных молекул или ионов растворенного вещества в агрегаты, либо в результате диспергирования сравнительно больших частиц. В соответствии с этим Сведберг делит методы синтеза коллоидных систем на конденсационные и диспергационные. Особо от этих методов стоит метод п е п-т и 3 а ц и и, который заключается в переводе в коллоидный раствор осадков, первичные частицы которых уже имеют коллоидные размеры. Наконец, в некоторых случах коллоидные системы могут образоваться путем самопроизвольного диспергирования дисперсной фазы в дисперсионной среде. [c.223]

    Склонность к структурообразованию глинистых минералов в органических средах зависит от многих факторов. Немаловажное значение при этом имеет способность последних набухать в дисперсионной среде. Процесс набухания зачастую ведет к самопроизвольному диспергированию структурных агрегатов, кристаллов минерала, что приводит к изменению количества и характера коагуляционных контактов дисперсных частиц. [c.208]

    Частицы коллоидной степени дисперсности могут быть получены измельчением твердых и жидких веществ (диспергационные методы) или объединением молекул или ионов в агрегаты (конденсационные методы). Для процессов очистки воды имеют значение главным образом конденсационные методы. Однако при формировании состава природных вод коллоидные частицы могут образовываться в результате самопроизвольного диспергирования контактирующих с водой осадочных пород (алюмосиликатов). Малая концентрация растворенных веществ, наличие органических высокомолекулярных соединений и других примесей, экранирующих растущие кристаллы, способствуют образованию частиц коллоидной степени дисперсности труднорастворимых соединений (гидроксидов, сульфидов тяжелых металлов и др.), которые образуются в результате химических реакций. [c.112]


    В качестве объектов экспериментального исследования самопроизвольного диспергирования выбраны дисперсные порошки, получаемые путем тонкого вибрационного измельчения. Как уже отмечалось, в известных условиях частицы порошков можно получить в виде своеобразных очень плотных агрегатов из первичных частиц, внутренняя поверхность которых недоступна измерению всеми мето- [c.95]

    Иногда эффект адсорбционного понижения прочности оказывается настолько елик, что приводит к самопроизвольному диспергированию частиц твердого тела или агрегатов частиц (пептизация) (4]. [c.8]

    Процесс объединения частиц дисперсной фазы в более крупные агрегаты (коалесценция) при акустическом воздействии всегда сопровождает процессы диспергирования и эмульгирования. Однако в отличие от разделения дисперсных частиц объединение их происходит с уменьшением поверхностной энергии и поэтому протекает самопроизвольно. Ьольшая часть известных работ в этой области посвящена экспериментальному и теоретическому определению условий коагуляции конкретных дисперсных систем. Теоретические исследования в основном посвящены вопросам коагуляции аэрозолей и гидрозолей. [c.56]

    Почти всегда методом диспергирования получаются аэрозоли с более крупными частицами, чем методом конденсации. Вследствие этого на практике для получения аэрозолей чаще пользуются методом конденсации. Процесс конденсации идет самопроизвольно и только в начале требует затраты энергии для получения пересыщенного пара. При конденсации пара отдельные молекулы вещества слипаются между собой, образуя большие агрегаты — коллоидные частицы. Пересыщенный пар может быть получен  [c.240]

    Наиболее важным и своеобразным является адсорбционное понижение прочности твердых тел, т. е. облегчение их диспергирования при действии внешних сил влиянием адсорбирующихся веществ. При этом новые поверхности развиваются на основе поверхностных дефектов — изъянов структуры, и их развитие облегчается адсорбцией. Предельным случаем является адсорбционное самопроизвольное диспергирование вследствие понижения поверхностной энергии до очень низких значений (ниже От) под влиянием поверхностно-активной среды. Именно таковы самопроизвольное эмульгирование под влиянием больших добавок ПАВ и распускание (коллоидное растворение) бентонитовых глин в воде. Пептизация является диспергированием коагуляционных агрегатов, слабо связанных вандерваальсовыми силами и поэтому легко распадающихся на отдельные первичные частицы под влиянием адсорбции. [c.20]

    П. А. Ребиндер с сотрудниками (с 1923 г.) [89, 90] разработали ряд основных проблем физико-химии поверхностных явлений в дисперсных системах. Таковы проблемы образования и устойчивости дисперсных систем, развития пространственных структур в этих системах, управления их свойствами и соответствующими процессами при помощи введения поверхностно-активных веществ, образующих адсорбционные слои на поверхностях раздела фаз. Эти исследования, проводившиеся в основном в отделе дисперсных систем Института физической химии АН СССР и на кафедре коллоидной химии Московского университета, привели к делению всех дисперсных систем на две большие группы по величине работы образования единицы поверхности раздела фаз (удельной свободной поверхностной энергии ха) 1) лиофобные дисперсии (с высоким межфазным натяжением 12 > т) и 2) лиофильные дисперсии (с низким межфазным натяжением 12 <С т> однако конечным и положительным, обеспечивающим сохранение двухфазности системы > 0). Лиофобные дисперсии всегда термодинамически неустойчивы их частицы самопроизвольно агрегируются, образуя агрегаты различной рыхлости л пространственные структуры, обнаруживая явления коагуляции и коалесценции. Устойчивость таких систем следует понимать лишь в условно-кинетическом смысле как величину, обратную скорости коагуляции или расслоения системы, как медленность ее разрушения в данных условиях. Для обеспечения практической устойчивости лиофобных дисперсий (золей, суспензий, эмульсий, пен) необходима их стабилизация — введение адсорбирующегося вещества — стабилизатора, образующего в дисперсионной среде на поверхности частиц защитную оболочку, которая препятствует коагуляции и коалесценции. Дисперсность таких систем невелика, когда они образуются путем диспергирования размеры капелек в лиофобных эмульсиях не менее 1 мк. Высокая дисперсность может быть достигнута лишь путем конденсации подавлением дальнейшего роста зародышей новой фазы п их стабилизацией. [c.250]

    U(ho) 2a. Следовательно, в рассмотренной системе термодинамическая устойчивость к агрегированию ( псевдолиофнльность системы) возможна при значениях 0, достигающих нескольких единиц мДж/м , что значительно (более чем на порядок величины) превышает критическое значение а, определяющее условие полной термодинамической устойчивости истинно лиофильных систем, которым посвящена гл. VIII. Таким образом, критическое значение удельной свободной энергии взаимодействия частиц U при описании пссвдолиофильных систем, возникающих при самопроизвольном диспергировании агрегатов, играет ту же роль, что и критическое поверхностное натяжение Ос в случае истинно лиофильных систем. Рассмотренные выше условия устойчивости дисперсных систем к коагуляции, включая оценки критических параметров U и Ug, получили непосредственное экспериментальное подтверждение (см. 4 гл. X). [c.252]


    Различают два основных класса дисперсных систем лиофильные и лиофобные. Лиофильные отличаются интенсивным взаимодействием частиц со средой, самопроизвольным диспергированием и термодинамической устойчивостью системы. Примерами лиофильных коллоидов могут служить глины, мыла, агрегаты высокомолекулярных соединений и т. п., образующие в водной или полярной среде ц граниченно устойчивые дисперсные системы. Лиофобные коллоиды, наоборот, характеризуются значительной энергией связи внутри дисперсной фазы, превышающей энергию взаимодействия последней со средой. В этом случае диспергирование осуществляется за счет затраты внешних сил — химических или механических. При этом образуются термодинамически неустойчивые коллоидные растворы, для которых понятие стабильности имеет лишь кинетический смысл. Некоторые лиофобные системы (например, красный золь золота) могут сохранять свою устойчивость сколько угодно долго, другие, наоборот, после образования быстро ее теряют (суспензии грубодисперсных частиц, концентрированные золи сульфидов металлов и т. д.). [c.7]

    Все стадии этого процесса важны и существенно влияют на использование пигмента, производительность оборудования и свойства конечного продукта. Схема его представлена в виде диаграммы на рис. 7.1. Чтобы воспрепятствовать реагрегации в течение и после диспергирования, важно выбрать правильные соотношения пигментов, смол и растворителей. Кроме того, вторая стадия введения растворов смол или растворителей должна выполняться в специальном оборудовании для диспергирования, чтобы исключить возможность коллоидного слипания (флокуляции) в конце процесса приготовления лакокрасочного материала. Процесс выполняется в различного типа диспергирующем оборудовании, где силы сдвига воздействуют на пигментные агрегаты и разделяют первичные пигментные частицы. Эта стадия часто называется перетиром. Межмолекулярные силы также оказывают существенное влияние иа смачивание поверхности пигмента и на процессы самопроизвольного диспергирования. Весьма желательно обеспечить максимальное проявление межмолекулярных сил любой лакокрасочной системы для быстрого [c.202]

    Были исследованы высокодисперсные порошки кварца, электрокорунда, кальцита, талька, полученные диспергированием в лабораторной эксцентриковой вибромельнице, либо сухим способом, либо в различных жидкостях — воде, толуоле, дихлорэтане, ацетоне, этиловом и /г-амиловом спирте. В некоторых опытах добавки составляли несколько процентов от веса материала. Хорошо высушенные после помола порошки хранились длительное время при комнатной температуре или в воде, или в органических жидкостях — гептане, ацетоне, диметилформамиде. Кинетика самопроизвольного диспергирования (распада) оценивалась по изменению во времени удельной поверхности высушенных порошков (методом Брунаузра, Эмметта, Теллера по N2). Наличие молекулярноплотных агрегатов частиц в измельченных порошках предварительно устанавливалось путем кратковременного их домола в воде. [c.96]

    Малоколлоидальные глины уже в покое сравнительно легко пептизируются, распадаясь на отдельные блоки. -Такие процессы наблюдаются при бурении в зонах, сложенных тощими сланцеватыми глинами, являясь причиной осыпей аргиллитов. В глиномешалках подобные самопроизвольно распавшиеся грубодисперсные массы легко суспендируются, но плохо поддаются дальнейшему диспергированию. Гидратация поверхности агрегатов приводит к тому, что даже при интенсивном перемешивании в полном объеме воды энергия столкновения частиц с мешалкой, стенками или между собой воспринимается их упруго-деформирующимися гидратными оболочками. При данной интенсивности перемешивания может быть установлена оптимальная длительность его, продление которой практически уже не ведет к дальнейшему диспергированию. Это является одной из причин низкого качества растворов из малогидрофильных глин, в особенности в случае приготовления их гидромониторными или инжекционными мешалками. [c.78]


Смотреть страницы где упоминается термин Самопроизвольное диспергирование агрегата частиц: [c.126]    [c.43]    [c.250]    [c.251]    [c.95]   
Коллоидная химия 1982 (1982) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегаты см Частицы

Диспергирование

Диспергирование самопроизвольно

Диспергирование самопроизвольное



© 2025 chem21.info Реклама на сайте