Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы гетерогенность

    По степени дисперсности (т.-е. величине частиц распределенного в среде вещества) дисперсные системы делятся на грубодисперсные (взвеси и гетерогенные смеси) с размерами частиц более I мкм и на тонкодисперсные коллоидные) системы с размерами частиц 1—0,1 мкм. Если же вещество диспергировано до размеров молекул и ионов, то возникает гомогенная система — раствор. [c.125]


    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]

    Многочисленные исследования, проводившиеся на протяжении многих десятилетий, показали, что коллоидное состояние вещества—это высокодисперсное (сильно раздробленное) состояние, в котором отдельные частицы являются не молекулами, а агрегатами, состоящими из множества молекул. Приняв это определение коллоидного состояния (коллоидной системы), можно сформулировать те принципиальные особенности, которые отличают коллоидные системы от истинных растворов. Поскольку коллоидные частицы состоят из множества молекул, то,, очевидно, им могут быть приписаны все термодинамические свойства Фазы. Равным образом молекулы среды, в которой диспергированы коллоидные частицы, образуют другую фазу. Следовательно, всякий коллоидный раствор является гетерогенной, многофазной (в простейшем случае двухфазной) системой в отличие от истинных растворов, которые являются гомогенными системами. Отсюда же следует вывод, что поскольку всякий коллоидный раствор представляет гетерогенную систему, условием ее образования является нерастворимость (или очень малая растворимость) вещества одной фазы в веществе другой фазы, ибо только между такими веществами могут существовать физические поверхности раздела, [c.12]


    КОЛЛОИДНЫЕ СИСТЕМЫ (коллоиды, коллоидные растворы) — гетерогенные дисперсные системы с предельно высокой дисперсностью. К- с. занимают промежуточное положение между истинными растворами и грубодисперсными системами (суспензиями, эмульсиями). Размеры коллоидных частиц от 10 до 10 см. Образование К. с. связано с двумя процессами коагуляцией и пеп-тизацией (см. Коагуляция. Пептизация). [c.131]

    Так как дисперсные системы, рассматриваемые в коллоидной химии, гетерогенны, то они состоят как минимум из двух фаз. Одна из них является сплошной и называется дисперсионной средой. Другая фаза раздроблена и распределена в первой ее называют дисперсной фазой. Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсной фазы и дисперсионной среды. Три агрегатных состояния (твердое, жидкое и газообразное) позволяют выделить девять типов дисперсных систем (табл. I. I). Для краткости их условно обозначают дробью, числитель которой указывает на агрегатное состояние дисперсной фазы, а знаменатель — дисперсионной среды. Например, дробью Т/Ж обозначают системы с твердой дисперсной фазой и жидкой дисперсионной средой (твердое в жидкости). [c.13]

    Все дисперсные системы гетерогенны, состоят по меньшей мере из двух фаз. Непрерывная фаза называется дисперсионной средой, раздробленная прерывная фаза — дисперсной фазой. Все дисперсные системы, составляющие предмет коллоидной химии, можно классифицировать по кинетическим свойствам дисперсной фазы на системы, в которых частицы дисперсной фазы могут свободно передвигаться (свободно дисперсные системы), и на системы, в которых эти частицы передвигаться практически не могут (связно-дисперсные системы). Существенно важна классификация по размерам частиц дисперсной фазы. По последнему признаку коллоидные системы подразделяются на ультрамикрогетерогенные, размер частиц которых составляет 1—100 нм, микрогетерогенные с размером частиц 100— 10000 нм (0,1—10,0 мкм) и грубодисперсные системы, размер частиц которых больше 10 мкм. [c.380]

    Для того чтобы произошел переход из одного состояния в другое, необходимо лишь изменить концентрацию раствора, температуру, pH или ввести в систему электролит. Изменяя условия существования системы, можно получать либо истинные (гомогенные) растворы с молекулярной степенью дисперсности, либо гетерогенные системы, частицы которых представляют собой агрегаты, состоящие из множества молекул. Такие частицы, подобно электронейтральным частицам в лиофобных коллоидных системах, называют мицеллами. Однако в отличие от мицелл коллоидных систем они термодинамически стабильны и не изменяются до тех пор, пока под действием внешних факторов не сместится равновесие, в котором находилась система. Устойчивость мицелл характеризуется скоростью диссоциации, т. е. средним временем пребывания молекулы в мицелле. [c.399]

    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]

    Коллоидные системы — гетерогенные дисперсные системы, степень дисперсности (раздробленности) которых лежит между истинными растворами (молекулярная раздробленность) и грубодисперсными суспензиями. [c.497]

    Дисперсность — важнейший признак объектов коллоидной химии. Она придает новые свойства не только отдельным элементам дисперсной системы, но п всей дисперсной системе. С ростом дисперсности увеличивается роль поверхностных явлений в системе, т. е. более сильно проявляется специфика гетерогенных дисперсных (коллоидных) систем. Одиако ссли гетерогенность является универсальным признаком, так как любая многофазная система в принципе может быть объектом коллоидной хпмии (иаиример, ее межфазная поверхность), то одиа только дисперсность без гетерогенности не может определить принадлежность конкретного объекта к коллоидной химии. Например, истинные растворы представляют дисперсию растворенного вещества в растворителе, но коллоидной системой не являются. Н. П. Песков в том же учебнике пишет ...в понятии дисперсности не заключается ничего, что указывало бы на гомогенность или гетерогенность данной системы... и еще ...одна степень дисперсности не может считаться исчерпывающей характеристикой коллоидного состояния, одним из самых важных признаков коллоидности является многофазность системы, то есть существование в ней физических плоскостей раздела... . Эту плоскость раздела Н. П. Песков называл коллоидной поверхностью . [c.11]


    Еще сравнительно недавно к коллоидным растворам относили и растворы высокомолекулярных веществ (полимеров), например, растворы крахмала, белков и т. д. Однако исследования показали, что растворы полимеров представляют собой истинные растворы, хотя и обладают многими свойствами, сходными со свойствами коллоидных растворов. Молекулы полимеров, как и мицеллы, не проходят через полупроницаемые мембраны типа пергамента и целлофана. Такое сходство объясняется тем, что размеры молекул растворенных полимеров имеют тот же порядок величин, что и размеры коллоидных частиц они значительно превосходят размеры обычных молекул. Этим же объясняется явление рассеивания света (опалесценция) как коллоидными растворами, так и растворами высокомолекулярных веществ. И все же еще раз подчеркнем, что растворы полимеров — это истинные растворы, в которых отсутствует основной признак коллоидной системы — гетерогенность, т. е. наличие поверхности раздела между дисперсной фазой и дисперсионной средой. [c.223]

    Методы исследования золей (определение размера, формы и заряда коллоидных частиц) основаны на изучении их особых свойств, в частности оптических, обусловленных гетерогенностью и дисперсностью. Из явлений, возникающих при действии света на золь, наиболее характерно рассеяние света. Это явление проявляется в виде опалесценции при боковом расстворе-нии золя, через который проходит световой луч, внутри коллоидной системы наблюдается светящийся конус (явление Тиндаля). [c.423]

    К высокомолекулярным веществам относятся вещества, состоящие из больших молекул (макромолекул) с молекулярным весом не менее (10 —15)-10. Нередко молекулярный вес природных высокомолекулярных соединений достигает значения нескольких миллионов. Понятно, что и размер макромолекул весьма велик по сравнению с размерами обычных молекул. Если, например, длина молекулы этана равна всего нескольким ангстремам, то линейные размеры молекулы каучука и целлюлозы достигают длины (4 —8)10 А. Это приближает растворы высокомолекулярных соединений к коллоидным растворам. Однако в растворах линейных полимеров отсутствует важный признак коллоидной системы — гетерогенность, т.е. поверхность раздела между дисперсной фазой и дисперсионной средой. Это связано с тем, что молекулы высокомолекулярных веществ большей частью цепные, нитевидные, т.е. очень сильно анизодиаметричны. Отношение длины к поперечному сечению у таких молекул составляет 10 —10 . И хотя их длина достигает размеров коллоидных [c.65]

    Приверженцы же другой— суспензионной —теории, исходя из того, что коллоиды не способны диализировать (проникать через растительные и животные мембраны), диффундировать и проявлять ощутимое осмотическое давление, но зато способны обнаруживать ярко выраженное явление опалесценции, считали коллоидные системы гетерогенными и потому близкими к простым взвесям, или суспензиям. [c.10]

    Наконец, весьма важными системами Т/Т являются гетерогенные сплавы, к которым принадлежит большинство технических металлов. В зависимости от условий получения сплав может иметь строение, соответствующее молекулярному раствору, коллоидной системе и грубой дисперсной системе. Например, в стали мы встречаемся со всеми переходами от истинного раствора (аустенит) через коллоидные растворы (мартенсит) вплоть до микрогетерогенных систем (перлит). В чугуне дисперсной фазой являются частицы углерода, размеры которых близки к коллоидным. [c.397]

    Однако уже к тому времени были известны коллоидные системы, обладающие термодинамической устойчивостью, например, растворы мыл и других коллоидных ПАВ (мицеллярные растворы). Кроме того, ио мере исследования структуры полимеров и их растворов стала проявляться важная роль поверхностных явлений в их свойствах. Это вызвало необходимость обратиться к более четким понятиям гетерогенности и микрофазы. [c.311]

    Лиофобные коллоиды являются гетерогенными высокодисперсными коллоидными системами. К ним принадлежат большей частью системы из неорганических веществ в водной дисперсионной среде, которые и представляют наибольший интерес для нашего курса. Типично лиофобные коллоиды при выделении дисперсной фазы образуют осадки, порошкообразные по структуре и не содержащие значительных количеств дисперсионной среды. Впрочем, наряду с типично лиофобными коллоидами существуют и такие лиофобные в общем коллоиды, которые обладают уже некоторой, и иногда довольно значительной, лиофильностью. К ним принадлежат, например, гидрозоли кремнезема (точнее — кремневых кислот), гидроокиси алюминия и др. В таких коллоидах частицы дисперсной фазы связывают большие количества воды и могут в известных условиях удерживать значительную часть ее ири выделении из раствора, образуя при этом студнеобразные продукты. В определенных условиях такие золи способны даже застудневать (желатинироваться), не выделяя воды, т. е. полностью удерживая (и связывая) ее. [c.507]

    Следует еще раз отметить, что коллоидные системы, для которых характерно молекулярно-кинетическое движение частиц дисперсной фазы, обладают свойствами как гетерогенных систем, так [c.311]

    Исходя из исследования поверхностей активности асфальтенов [267, 268] в интервале 20—150°С была найдена критическая концентрация мицеллообразования (ККМ) в групповых компонентах соответствующих нефтяных остатков. Показано, что истинные растворы получаются при массовом содержании асфальтенов 0,005—0,6 %. Более концентрированные растворы образуют гетерогенные дисперсные системы. При дальнейшем концентрировании образуются первичные надмолекулярные образования и затем асфальтены выделяются в отдельную фазу. Частицы асфальтенов в коллоидных системах имеют размеры 2—30 нм и образуют коацерваты размером до 2 мк. Размеры асфальтеновых частиц [c.280]

    Одно из девяти сочетаний Г/Г в обычных условиях не может образовать коллоидной системы, так как газы при любых соотношениях дают истинные растворы. Однако и газы могут проявлять некоторые свойства коллоидных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе. Ближе к коллоидным системам жидкие растворы, в которых молекулы растворителя и растворенного вещества значительно отличаются по размерам и природе. К таким растворам относятся растворы сильно ассоциирующих веществ и растворы полимеров, которые при определенных условиях могут образовывать ассоциативные и молекулярные гетерогенные дисперсные системы. Размеры молекул (ассоциатов) растворенного вещества иногда превышают размеры обычных коллоидных частиц. Эти системы обладают многими свойствами, характерными для типичных гетерогенно-дисперсных систем. Они как бы связывают в единое целое все дисперсные системы и указывают на непрерывность перехода от истинных растворов к истинным гетерогенным дисперсным системам. [c.14]

    Размеры коллоидных частиц колеблются в пределах 1-100 нм. Дальнейшее измельчение дисперсной фазы приводит к переходу высокодисперсной коллоидной системы в молекулярно-дисперсную, приближающуюся по свойствам к истинным растворам. Наличие частиц с размерами более 0,1 мкм (Ю см) характерно для микро-гетерогенных и грубодисперсных систем, уже не считающихся коллоидными, но совпадающих по некоторым свойствам с коллоидными дисперсиями. [c.22]

    Коллоидная химия изучает свойства дисперсных систем. Дисперсные системы гетерогенны и обладают сильно развитой поверхностью. Степень раздробленности вещества характеризуется величиной удельной поверхности 5о, которая равна отношению общей поверхности частиц 3 к объему вещества и, подвергнутого дроблению  [c.159]

    В золях, или коллоидных растворах, дисперсной фазой является твердое тело. Следует отметить, что термин коллоидный раствор не совсем правильный, так как истинные растворы — это гомогенные системы с молекулярной степенью раздробленности вещества, а коллоидные растворы — гетерогенные системы, обладающие межфазной поверхностью. По размерам частиц и по ряду свойств золи занимают промежуточное положение между истинными растворами и грубодисперсными системами — суспензиями. Золи — типичные коллоидные системы, которые наиболее ярко проявляют свойства, присущие веществу в коллоидном состоянии. [c.418]

    Молекулярный вес высокомолекулярных соединений очень велик, а размеры их макромолекул огромны. Это приближает их растворы по ряду свойств к коллоидным системам. Однако в растворах линейных полимеров отсутствует важный признак коллоидной системы — гетерогенность, т. е. поверхность раздела между дисперсной фазой и дисперсионной средой. Это связано с тем, что молекулы высокомолекулярных веществ большей частью цепные, нитевидные, т. е. очень сильно анизодиа-метричны. Отношение длины к поперечному сечению у таких молекул 10 —Ю . И хотя их длина достигает (и даже превосходит) размеры коллоидных частиц, поперечное сечение их остается в пределах молекулярных размеров (10 см). Поэтому, несмотря на огромные размеры, такая молекула поверхности раздела со средой не имеет. [c.201]

    К радиационным гетерогенным процессам относят процессц на границе раздела фаз (одна из которых - твердое тело) радиационно-стимулированная адсорбция, радиолиз адсорбированных веществ, радиационный гетерогенный катализ, радиационно-электрохимичес-кие процессы и процессы в водных коллоидных системах. Эта группа процессов является наиболее сложной среди других радиационно-хи-мических процессов, механизм их во многих случаях полностью не раскрыт [18]. [c.195]

    По размерам частиц дисперсной фазы гетерогенные дисперсные системы подразделяются на грубодисперсные, с размерами частиц больше I мкм, и тонкодисперсные, называемые также коллоидными, с размерами частнц меньше 1 мкм коллоидные системы называют также золями или коллоидными растворами. Гра ица между грубодисперсными и тонкодисперснымн системами услов а, особенно если учесть полидисперсность реальных систем. [c.155]

    Из ЭТОЙ таблицы видно, что коллоидно-дисперсные системы в отличие от истинных растворов являются аг-регативно неустойчивыми. Размеры их дисперсных частиц могут изменяться как самопроизвольно, так и под влиянием внешних факторов. Одной из причин неустойчивости коллоидных растворов является их гетерогенность. Коллоидные системы обладают громадной суммарной по-вехностью и, следовательно, большой свободной энергией. В силу второго начала термодинамики они стремятся к равновесному состоянию, характеризующемуся разделением системы на две фазы, имеющие минимальные меж-фазные поверхности и минимальную свободную поверх- [c.146]

    Вьпие ( 18 этого раздела) было указано, что все гетерогенные дпсперсиыс системы являются неустойчивыми. В агрегативном отношении особенно неустойчивыми являются тонкодисперсные, т. е. коллоидные системы. Одиако на практике встречаются относительные устойчивые коллоидные системы, что обусловлено наличием электрического заряда у коллоидных частиц. Будучи одноименно заряжены, коллоидные частицы при сближении отталкиваются друг от друга и, следовательно, коагуляция в такой коллоидной системе не происходит. [c.194]

    Сильно лио( обиые и сильно лиофильные кол.лоидные системы резко различаются ио многим важнейшим свойствам, в связи с чем кляссифи1сация коллоидных систем основана на этом иризиаке. Однако в настоящее время эта классификация не является общепринятой, тем более, что резкой границы между лиофобными и лиофильными коллоидными системами нет и известно много систем промежуточного характера. К лиофильным системам раньше относили и растворы высокомолекулярных органических соединений, одиако теперь установлено, что эти растворы представляют собой не гетерогенные, а гомогенные системы, т, е. являются истинными растворами, хотя и имеют ряд признаков, характерных для коллоидных систем. [c.195]

    Основным технологическим процессом получения товарных битумов является окисление кислородом воздуха тяжелых нефтяных остатков [31—33]. В течение 130 лет, т. е. со времени первого применения этого процесса и до наших дней, идет совершенствование режима технологии и техники производства окисленных бптумов. Сравнительно небольшая часть работ посвящена изучению химизма процесса. Тем не менее, и в настоящее время многие вопросы теории химизма и кинетики производства окисленных битумов остаются неясными. Сложность, многообразие п непостоянство состава и свойств исходного сырья, все расширяющиеся области применения и связанные с этим различные требования потребителей к качеству и ассортименту выпускаемых сортов окисленных битумов обусловливают многие трудности в технологии и режиме их производства. Как исходное сырье (тяжелые нефтяные остатки), так и готовая товарная продукция (окисленные битумы) представляют собою сложные коллоидные системы, состоящие из многокомпонентных гетерогенных в физическом и химическом отношении смесей, высокомолекулярных составляющих нефти, крайне недостаточно изученных. Поэтому задача равномерного распределения кислорода в массе сырья и управления процессами окисления его крайне сложна и сопряжена с рядом технических трудностей. [c.132]

    В отличие от истинных растворов коллоидные системы являются гетерогенными. Размеры коллоидных частиц по сравнению с размерами молекул диспергирующей среды настолько велики, что между ЖИД1С0Й и твердой фазами образуется поверхность раздела, и чем вынш дисперсность материала, тем выше эта поверхность. [c.239]

    Как раз в этот период и проявились отрицательные стороны дисперсоидоло-гни, ее механистическая сущность. Взяв за основу одну только дисперсность н объеднггив гетерогенные системы с истинными растворами, она завуалировала основной качественный признак объектов коллоидной химии — гетерогенность. [c.17]

    Значения ККМ соответствуют истинной растворимости ПАВ. При более высокой концентрации ПАВ в растворе образуется ми-целлярная (ассоциативная) коллоидная система. Ранее уже рассматривался процесс самопроизвольного диспергирования, который характерен для коллоидных ПАВ. Растворы коллоидных ПАВ являются классическим примером лиофильных гетерогенных систем— равновесных систем с минимумом энергии Гиббса, несмотря на огромную ыелчфазную поверхность. [c.294]

    Коллоидные системы являются частным случаем дисперсных систем. При этом, естественно, необходимым условием существования коллоидной системы является ее гетерогенность, то есть наличие как минимум двух сосуществующих фаз, из которых одна — дисперсная фаза распределена в другой — дисперсионной среде. Таким образом, коллоидная система, в простейшем случае двутсфазная, характеризуется различными свойствами в отдельных областях пространства, занимаемого системой, и существованием реальных физических поверхностей раздела между. этими областями. [c.21]

    Гетерогенные системы отличаются от гомогенных тем, что в них существуют межфазные границы. Свойства вещества и распределение компонентов в тонком слое, примыкающем к межфазной границе, отличаются от их объемных значений. Эти особенности влияют на общие свойства какой-либо системы тем сильнее, чем больше ее межфазная поверхность. В недиспергированных гетерогенных системах их влияние очень слабое, так как толщина слоя, обладающего особыми свойствами, чрезвычайно лала. При диспергировании фаз оно возрастает вследствие сильного увеличения их поверхности, приобретая исключительное значение в коллоидных системах. [c.74]

    Из этой таблицы следует, что коллоидно-дисперсные системы в отличие от истинных растворов сами по себе агрегативно неустойчивы. Размеры их дисперсных частиц могут изменяться как самопроизвольно, так и под влиянием внешних факторов. Одной из причин неустойчивости коллоидных растворов является их гетерогенность. Обладая громадной суммарной поверхностью, следовательно, большой свободной энергией, коллоидные системы согласно второму началу термодинамики стремятся к равновесному состояипю, характеризующемуся разделением системы ка две фазы, имеющие минимальные межфазовые ПОВерХНОСТИ И МИНИМЭЛЬ-ную свободную поверхностную энергию. [c.277]

    Эти частицы и поры превышают по размерам обычные молекулы и в совокупности составляют отдельнуюфазу, отграниченную поверхностью раздела от среды, в которой они находятся. Следовательно, коллоидные системы являются гетерогенными, состоящими из двух (или более) фаз дисперсной фазы (одной или нескольких) — совокупность частиц или пор — и дисперсионной среды, окружающей их. [c.71]

    По удельной поверхности коллоидные системы занимают особое положение среди дисперсных систем. В самом деле, удельная поверхность в молекулярных системах, например в истинных растворах, отсутствует, так как молекулы не обладают поверхностью в обычном смысле слова. Вместе с тем удельная поверхность грубодисперсных систем очень невелика, И лишь гетерогенные высокодисперсные коллоидные системы имеют сильно разбитую удельную поверхность. Это наглядно показано на диаграмме (рис. 1,2), изображающей изменение удельной поверхности с размером час-тшр т гр г П П Нгпй шм ш<шми у систем молекулярной степени [c.17]

    Обычные коллоидные системы в отличие от молекулярных растворов вследствие наличия пове )хности раздела частиц с дисперсионной средой гетерогенны, большей частью термодинамически неравновесны и агрегативно неустойчивы. Именно поэтому проблема устойчивости. коллоидных систем является центральной проблемой коллоидной химии, а коагуляция составляет наиболее важный механизм перехода к более устойчивому состоянию для всех типичных коллоидных систем. [c.259]

    К системам, в которых наблюдаются обратимые переходы подобного рода, относятся водные растворы многих поверхностноактивных веществ, например, мыл и мылоподобных веществ, а также растворы таннидов (дубильных веществ) и некоторых красителей. Эти растворы, если в них содержатся частицы, состоящие из большого числа мплр.ку.гц с полным правом можно отнести к лиофильным коллоидным системам, так как они обладают признаками коллоидных систем — гетерогенностью и высокой дисперсностью, но в отличие от лиофобных коллоидных систем термодинамически равновесны и агрегативно устойчивы. [c.399]

    К коллоидным системам относятся многокомпонентные гетерогенные диспергированные системы. В любой коллоидной системе различают дисперсионную среду — сплошную фазу, в которой распределены коллоидные частицы, и дисперсную фазу — совокупность этих частиц. Коллоидные системы отличаются определенной очень большой степенью дробления (так называемой степенью дисперсности) — размеры частиц от 10 до 10- м и отсутствием взаимодействия между фазами. Их относят к ультрамикрогетероген- ным системам. [c.262]


Смотреть страницы где упоминается термин Коллоидные системы гетерогенность: [c.247]    [c.247]    [c.195]    [c.26]    [c.10]    [c.254]    [c.14]    [c.432]   
Курс коллоидной химии (1976) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенность коллоидных систем как основное отличие их от молекулярных растворов

Гетерогенные дисперсные растворы. Коллоидные системы

Гетерогенный коллоидный

КОЛЛОИДНАЯ химия МИКРО-ГЕТЕРОГЕННЫЕ СИСТЕМЫ Суспензии

Система гетерогенная

Системы коллоидные

Системы коллоидные гетерогенная трактовка



© 2025 chem21.info Реклама на сайте