Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эндоплазматический гладкий

    Другой органеллой, в состав которой входят гладкие мембраны и которая функционально, а возможно, и структурно связана с эндоплазматической сетью, является аппарат, или комплекс Гольджи. Оц обычно расположен совсем близко от ядра (в области так называемых центросом, или центросфер) и состоит из уложенных в стопку гладких мешочков, а также из различного числа цистерн, пузырьков и вакуолей с гладкой поверхностью. Хорошо сформированные комплексы Гольджи в большом количестве встречаются в секреторных клетках, таких, как экзокринные клетки поджелудочной железы. Убедительные данные указывают на существование связи менаду цистернами гранулярной сети и пузырьками комплекса Гольджи, которые в свою очередь связаны с более крупными вакуолями комплекса. Вакуоли Гольджи дают начало секреторным гранулам, например зимогеновым гранулам, в которых содержатся и накапливаются белки, синтезированные рибосомами гранулярной сети (фиг. 79). [c.246]


    Аппарат Гольджи состоит из серии параллельных гладких мембран, несколько более толстых, чем мембраны эндоплазматического ретикулума, и нередко связанных с пузырьками и вакуолями все в целом отчасти напоминает структуру эндоплазматического ретикулума [3467]. [c.84]

Рис. 1-23. Электронная микрофотография тонкого среза клетки млекопитающего, на которой виден гладкий и шероховатый эндоплазматический ретикулум (ЭР). Участки гладкого ЭР участвуют в липидном обмене, участки шероховатого, усыпанные рибосомами, являются местами синтеза белков. Синтезированные белки покидают цитозоль и входят в некоторые другие компартменты клетки. (С любезного Рис. 1-23. <a href="/info/73091">Электронная микрофотография</a> <a href="/info/3785">тонкого среза</a> <a href="/info/200744">клетки млекопитающего</a>, на которой виден гладкий и <a href="/info/1877967">шероховатый эндоплазматический ретикулум</a> (ЭР). Участки гладкого ЭР участвуют в <a href="/info/629361">липидном обмене</a>, участки шероховатого, усыпанные рибосомами, являются <a href="/info/1629371">местами синтеза белков</a>. Синтезированные белки покидают цитозоль и входят в <a href="/info/867452">некоторые другие</a> <a href="/info/284697">компартменты клетки</a>. (С любезного
    Клеточные основы секреторной функции желез были рассмотрены в главе 4. Напомним, что в секреторных клетках мембраны гладкого эндоплазматического ретикулума группируются в стопки, называемые комплексом Гольджи, в которых хранятся и упаковываются в секреторные гранулы специфические белки. Когда клетка получает надлежащий стимул, эти гранулы высвобождаются. В зависимости от конкретного вида секреторной активности детали этого процесса могут сильно [c.9]

    Мы описали шероховатый ЭР а как обстоит дело с другой частью эндоплазматического ретикулума, в котором нет прикрепленных рибосом Он называется гладким ЭР. Это чрезвычайно многообразная структура, которая служит клеткам самы-.ми разными способами. Для других клеток тела мы приведем только два примера. В одном крайнем случае, например в волокне скелетной мышцы, гладкий ЭР образует жесткую внутреннюю систему мембран и каналов. В этом случае его называют [c.87]

    Например, в клетках семядолей Vi ia faba [20] установлено образование белковых телец из вакуолей, тогда как другие авторы [66] указывают на их ретикулярное происхождение (из эндоплазматической сети). Недавние исследования [1, 67) показали, что эти два процесса, по существу, соответствуют двум последовательным способам запасания глобулинов. В начальный период запасные белки накапливаются в вакуолях, которые довольно быстро разделяются на части и дают начало первым белковым тельцам. На второй стадии одновременно с синтезом белков в ШЭС появляются тяжи гладкого ретикулума. Они заполняются плотным веществом, расширяются и сливаются, образуя новые белковые тельца. По мнению Адлера и Мюнца [1], эти два типа биогенеза белковых телец являются вариантами одного механизма, поскольку у растительных клеток было показано ретикулярное происхождение вакуолей [57, 58], [c.137]


    Исследование ультраструктуры глютенинов с помощью электронной микроскопии обнаруживает существование фибрилл, ламелл и глобулярных агрегатов [143]. Наблюдались фибриллы диаметром 100—200 А, которые образуют компактную сеть [55]. Разнородность ультраструктуры особенно наглядно продемонстрирована в исследованиях Лефебвра и др. [127]. Они наблюдали два крупных типа субъединиц субмикроскопической структуры, очень непохожих друг на друга одни, близкие к глиадинам (гладкие на вид), а другие, еще более приближающиеся к растворимым белкам, фибриллярного вида, иногда соединенные с гранулами. Кроме того, им удалось в глютениновой фракции различить более или менее деградированные фрагменты мембраны и эндоплазматической сети (ретикулума). Эти наблюдения [c.218]

    Клеточная мембрана и сеть эндоплазматических мембран являются существенным элементом каждой живой клетки. Они не только отграничивают друг от друга клетки и их структурные элементы, но и обеспечивают активный транспорт низкомолекулярных веществ. Основной биологической функцией эндоплазматической сети и связанного с ней образования — так называемого аппарата Гольджи является, по-видимому, синтез основных биополимеров клетки и их транспортировка в нужные участки клетки . В участках так называемой шероховатой сети с эндоплазматическими мембранами связаны рибонуклеопротеидные частицы — рибосомы, в которых происходит синтез белка. В гладких участках эндоплазматической сети происходит биосинтез полисахаридов и липидов. [c.600]

    Электронномикроскопические исследования показывают, что в основе клеточных и внутриклеточных мембран лежит структура единичной мембраны толщиной 75—95 А, состоящая из двух слоев липида и двух слоев нелипидного материала . В настоящее время имеются данные, указывающие на присутствие углеводсодержащих биополимеров во внешнем слое клеточной мембраны . При биохимическом исследовании субклеточных частиц из клеток печени крыс было обнаружено высокое содержание гексозаминов и сиаловых кислот — специфических компонентов смешанных углеводсодержащих биополимеров во фракции гладких микро-сом , возникающих из гладкой эндоплазматической сети . Экспериментально доказано присутствие гликолипидов в клеточной мембране Mi ro o us lysodeikti us и других грамположительных бактерий . [c.600]

Рис. 0.4. Модель аксонального транспорта [3]. N — ядро Mi — митохондрия REL — гранулярный эндоплазматический ретикулум SER — гладкий эндоплаз-матический ретикулум Go — аппарат Гольджи, Ly — лизосома, Ах1 — аксолем-ма, Ахр — аксоплазма, Pol — полирибосома, МТ — микротрубочки, MF — микрофиламенты, Sy — место синтеза гидрофобных полипептидов Vs — синаптическая везикула. (Подробности см. в работе [3].) Рис. 0.4. <a href="/info/265708">Модель аксонального транспорта</a> [3]. N — ядро Mi — митохондрия REL — <a href="/info/1278103">гранулярный эндоплазматический ретикулум</a> SER — гладкий эндоплаз-матический ретикулум Go — <a href="/info/97362">аппарат Гольджи</a>, Ly — лизосома, Ах1 — аксолем-ма, Ахр — <a href="/info/1276959">аксоплазма</a>, Pol — полирибосома, МТ — микротрубочки, MF — микрофиламенты, Sy — <a href="/info/1385950">место синтеза</a> гидрофобных полипептидов Vs — <a href="/info/265924">синаптическая везикула</a>. (Подробности см. в работе [3].)
    На рис. 10.4 схематически показан путь, который проходит белок, синтезированный в перикарионе, из гранулярного эндоплазматического ретикулума в аппарат Гольджи, а оттуда через гладкий эндоплазматический ретикулум к нервному окончанию. Справа обозначен медленный аксональный поток, т. е. синтез компонентов структур трубочек и филаментов, их соединение и транспорт. [c.310]

    Помимо ядра и митохондрий в клетках эукариот существует и функционирует значительное число других органелл. Среди них следует в первую очередь упомянуть систему эндоплаэматическою ретикулума, которая представляет собой большое число ограниченных мембранами слоев, пузырьков, трубочек. Мембраны андоплазматического ретикулума oбpaзyютJ по-видимому, единую систему, связанную также с ядерной мембраной. Различают гладкий эндоплазматический ретикулум, имеющий трубчатое строение, в котором происходит в основном метаболизм липиДов. Кроме того, широко представлен шероховатый эндоплазматический ретикулум, на внешних поверхностях которого закреплены рибосомы. На этих рибосомах происходит синтез многочисленных мембранных белков. [c.434]

    Мембраны эндоплазматического ретикулума (ЭР) с рибосомами (Р) и без них взаимодействуют с гладкими пузырьками (П) периферической области аппарата Гольджи, которые образуются из собственных цистерн АГ. В результате формируются конденсирующие вакуоли (КВ), где скапливаются синтезируемые на рибосомах белки,а затем они превращаются в зимогенные гранулы (3), которые выделяются в просвет с помощью механизма обратного пиноцитоза. [c.44]

    Некоторые указания относительно механизма роста нейритов дает изучение внутренней структуры развивающегося нейрона. Как и в зрелом нейроне, рибосомы в основном сосредоточены в теле клетки, где, следовательно, и проходит синтез белка. Нейрит содержит микротрубочки и нейрофиламенты, а также немногочисленные мембранные пузырьки и митохондрии. В отлнчие от этого широкая ладонь конуса роста заполнена мелкими, иногда соединенными друг с другом мембранными пузырьками неправильной формы, напоминающими гладкий эндоплазматический ретикулум (рис. 18-64). Непосредственно под гофрированными участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии. Микротрубочкн и нейрофиламенты в этой области оканчиваются. [c.134]


    В цитоплазме практически всех эукариотических клеток имеется очень сложный трехмерный лабиринт мембранных каналов - эндоплазматический ретикулум, многочисленные складки и разветвления которого заполняют всю цитоплазму (рис. 2-12). Пространства внутри эндоплазматического ретикулу-ма, называемые цисщернами, используются в качестве каналов, по которым осуществляется транспорт различных веществ, как правило, из клетки во внешнюю среду. Однако в некоторых клетках цистерны служат хранилищами запасенных питательнь1х веществ. Существуют два типа эндоплазматического ретикулума шероховатый и гладкий. Наружная поверхность мембраны шероховатого эндоплазматического ретикулума [c.38]

    Выделяемые подобным способом микросомы (диаметр 16— 150 ммк) настолько малы, что они не видны в световом микроскопе, и первоначально эти частицы были лишь цитохимическим понятием, которое нельзя было отождествить с каким-либо определенным компонентом пптактной клетки . Палад и Сикевиц [235], изучавшие срезы микросом из ткани печени при помош,и электронного микроскопа, обнаружили, что преобладающий структурный элемент этих частиц представлен ограниченными мембранами образованиями. Последние напоминают соответствующие структуры эндоплазматической сети, наблюдаемые на срезах интактной клетки печени. При изучении этих образований в трех измерениях оказалось, что они представляют собой трубочки или пузырьки. Поверхность этих образований может быть и гладкой, однако у большинства из них на поверхности расположены мелкие плотные частицы, сходные с теми, которые видны на электронных микрофотографиях целой клетки (стр. 129). Следовательно, микросомы — это не артефакт, вызванный гомогенизацией ткани, а фрагменты эндоплазматической сети. Они представляют собой цитоплазматические структуры, существование которых в интактной клетке доказано. [c.131]

    Эндоплазматический ретикулум бывает гладким и ш е р о х в а т ы м. Лппжжи имеют гладкий эндоплазматический ретикулум, он ответствен за углеводный и липидный обмен. Поверхность шероховатого эндоплазматического ретикулума незначительна, здесь концентрируются рибосомы и происходит синтез белка. [c.26]

    Гликоген — это эквивалент крахмала, синтезируемый в животном организме, т. е. это тоже резервный полисахарид, построенный из остатков а-глюкозы встречается гликоген и в клетках многих грибов. У позвоночных гликоген содержится главным образом в печени и мышцах, иными словами в местах высокой метаболической активности, где он служит важным источником энергии. Обратное его превращение в глюкозу регулируется гормонами, главным образом инсулином (гл. 9). По своему строению гликоген весьма схож с амилопектином (рис. 3.13), но цепи его ветвятся еще сильнее. В клетках гликоген отлагается в виде крошечных гранул, которые обьгано бывают связаны с агра-нулярным (гладким) эндоплазматическим ретикулумом (рис. 5.12). [c.117]

    Участки ЭР, не несущие связанных рибосом, называются гладким ЭР. Как правило, если клетки и содержат настоящий гладкий ЭР, то в очень малых количествах в действительности большинство областей ЭР частично являются гладкими, а частично-гранулярными. Их называют промежуточным ЭР. Именно от этих районов отшиуровываются транспортные пузырьки, переносящие вновь синтезированные белки в аппарат Гольджи (см. рис. 8-9). Однако существуют специализированные клетки, в которых гладкий ЭР хорошо развит и выполняет особые функции. В частности, гладкий эндоплазматический ретикулум преобладает в клетках, специализирующихся на метаболизме липидов. Например, клетки, синтезирующие стероидные гормоны из холестерола, имеют обширный гладкий ЭР, предназначенный для расквартирования ферментов, участвующих в синтезе холестерола и его преобразовании в гормоны (см. рис. 8-37,А). [c.40]

    Синтез альдостерона протекает по специфичному для минералокортикоидов пути и локализован в клубочковой зоне надпочечников. Превращение прегненолона в прогестерон происходит в результате действия двух ферментов гладкого эндоплазматического ретикулума —Зр-гидроксистеро ид-дегидрогеназы (Зр-ОН-СД) и Л - -изомеразы. Далее прогестерон подвергается гидроксилированию по положению С-21 и образуется 11-дезоксикортикостерон (ДОК), являющийся активным минералокортикоидом (задерживает Na+). Следующее гидроксилирование (по С-11) приводит к образованию кортикостерона, обладающего глюкокортикоидной активностью и в малой степени—минералокортикоидной (менее 5% от активности альдостерона). У некоторых видов (например, у грызунов) кортикостероид— самый мощный глюкокортикоидный гормон. Гидроксилирование по С-21 необходимо для проявления как ГЛЮКО-, так и минералокортикоидной активности, но наличие гидроксильной группы при С-17 ведет в большинстве случаев к тому, что стероид обла- [c.207]

    Для синтеза кортизола необходимы три гидрок-силазы, воздействующие последовательно на положения С-17, С-21 и С-11. Первые две реакции идут очень быстро, тогда как гидроксилирование по С-11 относительно медленно. Если сначала происходит гидроксилирование по С-21, то это создает препятствие для действия 17а-гидроксилазы и синтез стероидов направляется по минералокортикоидному пути (образование альдостерона или кортикостерона в зависимости от типа клеток). 17а-Гидроксилаза—фермент гладкого эндоплазматического ретикулума, воздействующий либо на проге- [c.208]

    NP кроме того, NA синтезируется в меньших количествах, чем НА. Негликозипированная КА, синтезированная т уИго, также хорошо выявляется [134, 135]. Была изучена ассоциация частично гликозилированной КА с шероховатым эндоплазматическим рети-хулумом и дальнейшее гпикозилирование и миграция к гладким мембранам и к плазматической мембране 52, 92, 125, 150]. Более детальный анализ, такой как был сделан для 6-го белка вируса везикулярного стоматита [226], может оказаться очень интересным в свете включения КА в мембрану К-концом. [c.52]

    Лизосомальные, митохондриальные и пероксисомальные Гладкий эндоплазматический ре-тикулум и шероховатый эндоплазматический ретикулум — место присоединения рибосом Внешняя клеточная оболочка, базальная мембрана и клеточная стенка простейших [c.106]


Смотреть страницы где упоминается термин Эндоплазматический гладкий: [c.32]    [c.369]    [c.556]    [c.178]    [c.44]    [c.135]    [c.38]    [c.153]    [c.410]    [c.512]    [c.241]    [c.244]    [c.249]    [c.53]    [c.318]    [c.380]    [c.26]    [c.362]    [c.208]    [c.208]    [c.224]    [c.80]    [c.208]   
Технология микробных белковых препаратов аминокислот и жиров (1980) -- [ c.0 ]

Гены и геномы Т 2 (1998) -- [ c.164 ]




ПОИСК







© 2025 chem21.info Реклама на сайте