Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изучение конформаций и внутреннего вращения молекул

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    Электрический дипольный момент молекулы является важной характеристикой химического соединения, поскольку дает представление о распределении зарядов и электронной плотности в молекуле, т. е. о полярности самой молекулы и ее химических связей. На основе экспериментальных значений дипольных моментов молекул и принципа векторной аддитивности дипольных моментов связей возможно определение симметрии и некоторых структурных параметров молекул, например валентных углов. Методы изучения дипольных моментов сыграли значительную роль в развитии учения о внутреннем вращении, поворотной изомерии и конформациях молекул. [c.81]

    Изучение конформаций и внутреннего вращения молекул [c.247]

    Дальнейшее развитие конформационного анализа связано с изучением внутреннего вращения в молекулах. В 1936—1937 гг. Питцер и сотр. [23, 24] показали, что вращение в этане не свободно — при прохождении через заслоненную конформацию молекула преодолевает потенциальный барьер порядка [c.17]

    Цели физико-химика, работающего с растворами макромолекул, несколько иные в том случае, когда он имеет дело с веществами биологического происхождения, которые могут содержать макромолекулы одного рода или же сравнительно небольшое число химических соединений. Такие вещества могут иметь чрезвычайно сложный химический состав. Например, белки могут состоять из последовательного ряда примерно 20 различных аминокислот, составляющих отдельные участки цепи. Однако молекулы, входящие в состав данной структуры, имеют совершенно четкую форму не только в смысле точной последовательности аминокислотных звеньев вдоль цепи, но также и в смысле конформации цепи главных валентностей. Экспериментатор может иметь дело с точным очертанием формы молекулы на двух уровнях. В случае исторически более старого подхода рассматривается общая форма молекулы, которая аппроксимируется эквивалентным эллипсоидом вращения . Сведения такого рода принципиально могут быть получены при изучении свойств растворов жестких макромолекул, обусловленных внутренним трением. С другой стороны, сравнительно недавно появились методы изучения образования спиральных участков цепи главных валентностей, являющихся следствием упорядоченной последовательности некоторых предпочтительных конформаций. Этот вопрос будет обсужден в гл. III и V. [c.18]

    Параллельно с экспериментальным исследованием конформаций этана g его производных проводилось, хотя и менее успешно, теоретическое изучение внутреннего вращения атомных групп. В 1954 г. С. Мидзусима, анализируя существующие гипотезы о природе потенциала торможения, писал, что "...до сих пор не существует убедительной и хорошо разработанной теории, которая объясняла бы количественно потенциальные барьеры, препятствующие внутреннему вращению" [102. С. 71]. Тремя годами позднее Э. Уилсон высказал предположение о том, что потенциальный барьер должен "... некоторым образом представлять свойство, присущее самой осевой связи, и не должен быть обязан в сколько-нибудь значительной мере прямым силам между примыкающими к ней атомами или теми частями электронного облака, которые относительно удалены от этой связи" [ПО. С. 819]. Представление о том, что эффект "... действует через связь С-С и возникает вследствие недостатка вращательной симметрии у этой связи", было постулировано еще в 1940 г. А. Лэнгсетом и соавт. [111. С. 416]. С такой трактовкой не согласен Л. Полинг, который разработал теорию, объясняющую потенциальный барьер Вращения наличием обменного взаимодействия электронных облаков валентных связей, примыкающих к аксиальной связи [112, 113]. Л Полинг предположил, что в обменном взаимодействии, помимо электронов в s-и р-состояниях, участвуют также электроны в f- и d-состояниях. Многочисленные квантовомеханические расчеты потенциальных барьеров у этаноподобных молекул, проведенные самим Л. Полингом, а также Г. Эйрингом, Г. и Ф. Харрисами, К. Питцером и У. Липкомбом и др. [1958-1967 гг.) с учетом и без учета d- и f-электронных состояний, не привели к однозначным результатам. Строгий расчет затруднен тем обстоятельством, что высота потенциального барьера в квантовомеханических расчетах представляет собой малую разность очень больших величин. [c.121]


    Несмотря на то, что с экспериментальной точки зрения вопрос о внутреннем вращении в молекулах изучен довольна хорошо, теория тормозящего потенциала еще практически не разработана. В принципе строгий квантовомеханический расчет, основанный на учете электростатических взаимодействий между всеми электронами и ядрами молекулы, должен,, конечно, дать значения энергий всех конформаций молекулы и, следовательно, высот барьеров и разностей энергий между поворотными изомерами. Однако вычисление тормозящего потенциала предъявляет особенно высокие требования к точности рез гльтатов, полученных с помощью приближенных квантовомеханических методов. Энергия торможения значительно меньше суммарной энергии молекулы, так что высоты барьеров и разности энергий между поворотными изомерами представляют собой при таком методе расчета малые разности больших величин. Поэтому до сих пор не существует достаточно строгого квантовомеханического расчета потенциальной кривой даже для простейшего случая молекулы этана. [c.53]

    Ядерный магнитный резонанс. Возникновение ЯМР спектроскопии относится к 1946 г. Хотя этим методом можно получить сведения и о межатомных расстояниях, в стереохимии органических соединений он применяется главным образом при изучении внутреннего вращения и конформаций органических молекул, о чем будет идти речь в главе VIII. [c.179]

    Рассмотрим интересный пример изучения поворотной изомерии 1,4-дибром-бутана. В этой молекуле имеется три связи С—С, при заторможенном внутреннем вращении вокруг которых возможна поворотная изомерия, т. е. транс-(Г) или гош- (Г) расположение двух атомов С или С и Вт. Всего можно представить 10 шахматных конформаций молекулы Вг—СНг—СНг—СНг—СНг—Вг (1) ТТТ. (2) ГТГ, (3) ГТГ, (4) ТТГ, (5) ТГТ, (6) ТГГ, (7) ТГГ, (8) ГГГ, (9) ГГ Г, (10) ГГГ, три из них (1, 2, 3) показаны на рис. Х.9. Теоретически все они должны иметь отличающиеся колебательные спектры, но практически многие частоты каждого конформера будут совпадать с какими-то частотами некоторых других конформеров. Так, например, валентные колебания С—Вг двух групп СНгВг практически оказываются мало связаны друг с другом, т. е. частоты гс вг синфазных и антифазных колебаний близки и зависят в основном от конформации фрагмента —С—СНг—СНг—Вг. [c.225]

    Аллильные производные ртути обладают еще одной особенностью. По аналогии с аллилгалогенидами [61 — 64] можно предположить явление заторможенного внутреннего вращения относительно связи С—С, прилежащей к связи С—Hg, и поворотную изомерию рассматриваемых молекул. В ИК-спектрах были найдены лишние полосы, которые можно было бы отнести за счет поворотной изомерии, но без изучения температурной зависимости интенсивностей полос и других дополнительных исследований пока трудно делать конкретные выводы о конформациях молекул аллилмеркургалогенидов. [c.253]

    Макромолекулы обладают определенной гибкостью, обусловленной тем, что части макромолекулы могут вращаться вокруг ординарных связей. Гибкость макромолекул, наблюдаемая при экспериментальном изучении растворов полимеров, определяется именно свойствами ординарных связей [31]. При изучении низкомолекулярных веществ было показано, что вокруг таких связей осуществляется вращение частей молекул, заторможенное в той или иной степени равновесные положения частей молекулы относительно друг друга разделены потенциальными барьерами [31 [. Внутреннее вращение происходит в полимерных цепях, содержащих ординарные связи, и имеет характер микроброунов-ского движения. Молекула непрерывно флюктуирует, приобретая множество различных конформаций. Если же отдельные звенья цепи обладают некоторой свободой вращения друг относительно друга, то степень корреляции между направлениями этих звеньев с увеличением расстояния между ними быстро убывает. Движения достаточно удаленных звеньев независимы друг от друга. Учет заторможенности вращения в полимерной цепи был впервые проведен Бреслером и Френкелем [32]. Дальнейшее развитие эта идея получила в работах Волькенштейна с сотр. Оказалось, что изолированную макромолекулу можно представить состоящей из большого числа независимых элементов—сегментов, причем длина сегмента определяется длиной мономерного звена и потенциалом торможения при внутреннем вращении вокруг ординарной связи, который возрастает при введении в молекулу полярных и больших по размеру атомов и групп атомов. Движение макромолекул в форме сегментального теплового движения возможно при условии, что тепловая энергия кинетических единиц сравнима с потенциалом внутреннего вращения или больше его. Это наблюдается как вблизи температуры стеклования Т , так и в области более высоких температур. Так, из рис. 6 следует, что вблизи 80 при нагревании коэффициент теплового расширения полиэтилентерефталата резко увеличивается. При температурах ниже подвижность основных цепей макромолекулы мала, и полимер находится в стеклообразном состоянии. При полимер переходит в высокоэластическое состояние и приобретает способность к большим обратимым деформациям. [c.24]


    Это определяется несколькими причинами. Оптическая активность открыта давно. На протяжении более чем полувека химики для идентификации соединения пользовались удельным вращением, измеренным обычно в желтом свете спектральной линии натрия. Однако вплоть до последних десятилетий это мало что давало структурной химии. Не была развита пригодная для практических расчетов теория явления, отсутствовали измерения дисперсии оптической активности в широком интервале длин волн, не было соответствующей спектрополяриметрической аппаратуры. Одним из первых понял важность измерений дисперсии выдающийся химик Л. А. Чугаев, вклад которого в эту область имеет непреходящее значение. В дальнейшем положение изменилось. В результате теоретических работ Куна, Кирквуда, Эйринга были развиты приближенные методы расчета, позволяющие связать оптическую активность и ее дисперсию со строением молекул. Произошли глубокие сдвиги в органической химии. Когда-то органическая химия начиналась с изучения природных смол и лаков, продуктов перегонки каменного и древесного угля. Сейчас она вновь обратилась к природным соединениям — но уже на глубокой научной основе. Возникла мощная область биоорганической химии, исчезают границы между органической химией, биохимией и молекулярной биологией. Если еще недавно внутреннее вращение вокруг единичных связей в молекуле органического соединения считалось совершенно свободным, то сейчас особое внимание сосредоточено на различных конформациях, возникающих при внутренних поворотах, на явлении ротамерии. Оказалось, что эти тонкие особенности молекул имеют важнейшее значение при их функционировании в биологических системах, что они определяют физикохимические свойства природных и синтетических полимеров. Теория и опыт показали, что именно дисперсия оптической активности является пока что наилучшей и наиболее доступной характеристикой вещества в конформационной химии. [c.5]

    R1R3 —)п, все конформации создают настолько заметное напряжение, что такие молекулы можно, вероятно, считать не поддающимися исследованию с помощью обычных молекулярных моделей. Все же в действительности существует ряд довольно устойчивых полимеров, что иллюстрирует ограниченные возможности моделирования. Типичным примером таких полимеров является полиизобутилен [— СНг — С(СНз)г — п, кристалличность которого позволяет определить конформацию его цепей [248]. Она соответствует i = = 82° и валентному углу 114°. Отсюда видно, что большие стерические напряжения в этой молекулярной цепи создают минимум потенциальной энергии при таком значении угла внутреннего вращения, которое намного отличается от значений углов, соответствующих заторможенным конформациям нормальных парафиновых цепей. На основе изученной кристаллической структуры полиметилметакрилата, асимметрические центры которого имеют по два различных громоздких заместителя, можно предположить, что изотактическая цепь образует спираль из пяти мономерных остатков на виток (который образуется, нанример, за счет конформационного сегмента с < >1 = 0°, < 2 = 72°), а синдиотактическая цепь имеет вытянутую форму с конформационной последовательностью tgtg ) [205]. Интересен также полиоксиметилен (— Hg — О —) , в котором предпочтительна деформированная чисто скошенная конформация (ф = 102,5°),. вследствие чего цепи этого полимера в противоположность полиэтиленовым цепям принимают спиральную форму [249]. Было высказано нред-положение о том, что это явление, возможно, вызвано взаимодействиями между диполями С — О, которые оказывают противодействие конформа- [c.99]

    Изучение таких кристаллических структур позволяет получить богатую информацию о преимущественных значениях углов между связями и углов внутреннего вращения — информацию, которая важна для анализа конфигурации цепи. Однако рентгеноструктурный анализ дает лишь одну статическую картину конформации молекулы. В случае же одноцепочечных олигонуклеотидов или полинуклеотидов все имеющиеся данные для растворов свидетельствуют о наличии равновесия между двумя или более конформациями. Не ясно, является ли геометрия взаимного расположения оснований, наблюдаемая в кристаллических структурах, типичной для растворов или она характерна лишь для небольшой части молекул. Как бы то ни было, рентгеиоструктуриые данные являются важной отправной точкой в исследовании, и они показывают, что те положения, которые развивались до сих пор в этой главе, вели в правильном направлении. [c.250]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    Решающим доказательством справедливости предложенного подхода к решению задачи о структурной организации белка явились результаты априорного расчета трехмерной структуры бычьего панкреатического трипсинового ингибитора и количественное представление свертывания белковой цепи как самопроизвольного, быстрого и безошибочного процесса. Рассчитанная при использовании аминокислотной последовательности и стандартной валентной схемы конформация белка совпала с кристаллической структурой молекулы БПТИ. Точность расчета значений всех двугранных углов вращения ф, у, (О и %, расстояний между атомами С всех остатков и длин реализуемых водородных связей оказалась близкой точности рентгеноструктурного анализа белков высокого разрешения. На основе данных о конформационных возможностях аминокислотной последовательности БПТИ получили свое объяснение все детали ренатурации белка, механизм которой был изучен экспериментально. Тем самым, во-первых, была подтверждена неравновесная термодинамическая модель сборки белка. Во-вторых, была апробирована физическая теория структурной организации белка, вскрывающая природу бифуркационных флуктуаций и утверждающая представление о нативной конформации белковой молекулы как о глобальной по внутренней энергии структуре, плотнейшим образом упакованной и согласованной в отношении всех своих внутриостаточных и межостаточных невалентных взаимодействий. Именно гармония между ближними, средними и дальними взаимодействиями ответственна за резкую энергетическую дифференциацию и выделение из множества возможных структурных вариантов стабильной и уникальной для данной аминокислотной последовательности конформации белка. В-третьих, продемонстрированы реальность фрагментарного метода теоретического конформационного анализа пептидов и белков и удовлетворительное количественное описание с его помощью их пространственных структур применительно к условиям полярной среды. Под- [c.589]

    Вновь возникший интерес химиков, исследующих белок, к методу ДОВ обусловлен применением этого метода для изучения внутренней структуры белков. Одни из первых успехов в этой области заключались в обнаружении конформационного вращения, обусловленного а-сниралью, отличавшегося от конфигурационного вращения остатков аминокислот. Это в свою очередь привело к появлению рабочих гипотез, которые позволяют интерпретировать данные ДОВ белков исходя из содержания в них спиралей. В действительности при выводе этих гипотез было использовано много предположений, в том числе весьма заманчивых, но всегда остается богатая почва для возникновения новых гипотез. Поэтому следует сохранять умеренность в оценке достигнутых успехов и осторожность в интерпретации данных. Таким путем можно будет найти разумные подходы к проблеме определения степени спиральности молекул белков. В самом деле, накопление и анализ новых и, возможно, более точных экспериментальных данных откроют широкие возможности для дальнейшего уточнения наших понятий. Поскольку в настоящее время становятся доступными все лучшие приборы, значительное внимание уделяется измерениям в области дальнего ультрафиолета, которые позволят получить новые сведения о происхождении оптического вращения и тем самым найти лучшую корелляцию между конформациями белков и их оптическими свойствами, хотя и до си.х пор это была очень плодотворная область исследования. Ни в коем случае нельзя недооценивать важности других структурных элементов, помимо и-спирали, хотя исследования, проводимые в этом направлении, в настоящее время все еще редки, несмотря на то что будущее представляется многообещающим. [c.126]

    Хотя РНК в растворе, без сомнения, имеет вторичную структуру [46], эта структура слишком подвижна, чтобы иметь какую-то одну уникальную конформацию. Рентгеноструктурный анализ РНК не позволяет определить ее точных параметров, так как рентгенограммы получаются слишком диффузными. Лишь в одном случае — для деградированной рРНК — удалюсь получить правильную кристаллическую форму, однако какова связь этих результатов с интактными молекулами, пока не ясно [47]. Тем не менее на основании изучения гидродинамических и оптических свойств РНК можно представить себе некоторые детали внутренней организации их полинуклеотидных ценей. С одной стороны, РНК ведет себя как гибкий полиэлектролит — ее размеры, онределенные с помощью метода светорассеяния, седиментационпые свойства, вязкость и двулучепреломле-ние в потоке зависят от температуры, pH и ионной силы с другой стороны, РНК проявляет свойства упорядоченной структуры, построенной из коротких ДНК-нодобных участков ее гипохромизм и оптическое вращение, а также гидродинамические свойства претерпевают достаточно резкие изменения при повышении температуры или при понижении концентрации противоионов. Полное описание конформации РНК должно включать в себя ее размеры, или радиус инерции, ее гидродинамическую форму, а также детали ее вторичной структуры, куда входят состав, устойчивость и уникальность спиральных участков. Проблемы вторичной структуры РНК решаются, однако, главным образом оптическими методами, которые обсуждаются в других статьях этого сборника. Здесь мы ограничимся обсуждением методов определения размеров и формы молекул РНК. [c.266]


Смотреть страницы где упоминается термин Изучение конформаций и внутреннего вращения молекул: [c.274]    [c.59]    [c.129]    [c.89]    [c.128]    [c.99]   
Смотреть главы в:

Физические методы исследования в химии -> Изучение конформаций и внутреннего вращения молекул




ПОИСК





Смотрите так же термины и статьи:

Вращение молекулы

Конформация молекул



© 2025 chem21.info Реклама на сайте