Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль упругости режима деформации

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]


    Те.мпература смешения оказывает заметное влияние па физические свойства смеси, причем это влияние тесно связано с действием временного фактора чем короче установленный режим смешения, тем выше допускаемая температура. Хотя обобщения в данном случае довольно ненадежны, обычно полагают, что смешение бутадиен-стирольного каучука с 50 или более вес. ч. высокодисперсной сажи при температуре 168° С и выше придает вулканизатам более высокий модуль, более низкие предел прочности и относительное удлинение при растяжении и, возможно, лучшие сопротивление истиранию и упругость (по отскоку), чем смешение при более низких температурах. Высокотемпературное смешение также приводит к снижению выносливости вулканизатов при многократных деформациях. Эти выводы не обязательны для резин из натурального каучука. Обширные исследования в этой области были проведены Дрогиным в -зв.бв [c.279]

    При периодическом изменении направления деформации (динамический режим нагружения) представляется возможным измерить комплексную вязкость системы т] = г) щ". На практике это сводится к оценкам значений модуля упругости О и модуля потерь О", так как г = 0 /а> и т]" == (где со — круговая ча- [c.176]

    Модуль зависит также от вида деформации (растяжение, сжатие, сдвиг и др.) при этом соотношения между значениями модуля при разных деформациях отличаются от известных из классич. теории упругости соотношений для идеальных упругих несжимаемых материалов (последние лишь приближенно справедливы в области малых равновесных деформаций Р.). Поэтому, приводя модуль Р., необходимо указывать все условия нагружения режим, вид и величину деформации (или напряжения). [c.158]

    Экспериментально установлено, что в определенных диапазонах частот динамический модуль упругости не зависит от частоты и в ограниченных пределах зависит от амплитуды колебаний. Это позволяет считать упругую восстанавливающую силу линейно зависящей от деформаций. Однако, упругие свойства резины могут изменяться при ее нагреве в процессе работы. Нагрев резины определяется величинами амплитуды и частоты деформации детали. Учет аналитическим путем всех факторов, влияющих на тепловой режим работы детали невозможен, и они определяются опытным путем. [c.134]

    Режимы деформации адсорбционного слоя могут быть весьма разнообразны, и соответственно режиму будет изменяться и модуль динамической упругости. Предельным можно считать режим очень быстрой деформации, при котором за двигающимся барьером остается зона полностью очищенной от ПАВ поверхности, а перед ним — зона предельно сгустившегося слоя ПАВ, в котором адсорбция равна ее предельной величине. Скорость движения барьера должна быть в этом случае много больше скорости диффузионного выравнивания концентраций перед фронтом и за фронтом движущегося барьера. Кажущийся очевидным ответ, что в этом режиме сила противодействия движению барьера равна (оо - а ), скорее всего будет ошибочным ао — натяжение растворителя, а, — натяжение раствора при насыщении его поверхности поверхностноактивным веществом. Сгустившийся перед барьером слой ПАВ в механическом смысле (в силу несжимаемости) можно считать продолжением барьера, т. е. единственным эффектом появления уплотненной зоны будет увеличение толщины барьера. Действующим на эту сторону барьера натяжением будет натяжение а еще не возмущенной поверхности перед фронтом барьера. Таким образом, в указанном режиме противодействие равно (ао - а). [c.587]


    Во многих случаях при практической оценке пригодности волокон для текстильных целей ограничиваются узким кругом механических характеристик. В частности, чаще всего определяют прочность и удлинение при разрыве, реже — условный модуль растяжения. При технологических исследовательских разработках дополнительно определяют составные части деформации (упругую, высокоэластическую, пластическую), изменение прочностных и деформационных характеристик при увлажнении нити, прочность в узле и в петле, модуль сдвига (на крутильном маятнике), устойчивость к многократным изгибам. [c.295]

    Возможен и другой случай (рис. 138), когда величина средней деформации еср увеличивается при постоянстве амплитуды деформации Ае. При этом режиме среднее напряжение остается постоянным, т. е. T p= onst. Как видно из рис. 138, при таком режиме наблюдается увеличение средней величины деформации еср. Механизм этого процесса развивается подобно процессу ползучести. Так как амплитуда деформации Ае в этом примере задана постоянной, то уменьшение модуля упругости сопровождается уменьшением амплитуды деформации. Этот режим испытания применяется для исследования утомления пряжи и корда и реже резин. На других режимах испытания мы останавливаться не будем. [c.230]

    Теплообразование в резине. Упруго-гистерезисные свойства резины таким образом зависят от содержания наполнителя, что величины динамического модуля и модуля внутреннего трения тем больше возрастают с наполнением, чем активнее введенный наполнитель. Поскольку многократйые деформации приводят к теплообразованию в резине, снижающему ее усталостную прочность, увеличение дозировки и активности наполнителя уменьшает долговечность изделия. При этом, однако, решающее значение имеет режим работы резины. Из рассмотренных выше соотношений (1.59) и (1.60) следует, что удельные механические потери q цикла могут быть определены следующим образом  [c.40]

    При утомлении в реж-име а = onst падение модуля упругости с ростом температуры, с одной стороны, приводит к росту амплитуды деформации, с другой стороны, к повышению гистерезисных потерь (см. рис. 5.4). В результате вероятность стабилизации температуры в процессе утомления существенно уменьшается. Однако и в этом режиме интенсивность теплообразования при повышении температуры замедляется, по-видимому, вследствие повышения интенсивности теплоотвода. Уменьшение внутреннего трения резины на всех стадиях утомления обусловливает понижение температуры образца [74, 119] п возрастание усталостной выносливости. [c.177]

    Другим весьма важным фактором внешнего трения (главным образом, эластических материалов) является режим постоянной деформации полимера (е = onst) [58]. Напряжение на контакте зависит в этом случае от модуля упругости полимера и степени деформации. [c.133]

    Ангидрид Режим отверждения, ч °С Наполнитель, части/100 частей смеси Предел прочности при сжатии, кгс сл . Модуль упругости при сжатии 10 кгс/сж Текучесть при 0,2%-ном сдвиге, кгс1см Деформация при начале текучести, % Деформация при максимальном сжатии, % [c.176]

    На режим работы отрицательно влияет также превышение угла фз над углом ф . Отрицательное действие перекрытий в этом случае обусловлено тем, что при наличии угла запаздывания фд поршень на некоторой части хода в процессе нагнетания (вытеснения жидкости) будет перемещаться при перекрытом окне цилиндра. В результате, если фз > ф , поршень, выбрав недозапол-ненное вследствие наличия ф пространство цилиндра, будет при дальнейшем движении сжимать жидкость в последнем (явление компрессии). При этом, вследствие высокого модуля упругости жидкости, изменения давления в цилиндре могут достигать больших величин даже при очень малых перемещениях поршня в отсеченном цилиндре в направлении уменьшения его объема (см. стр. 40). Давление в этом случае повысится до такого значения, при котором будет обеспечен ход поршня за счет утечки жидкости через зазоры и за счет упругих деформаций жидкости в объемах элементов насоса. [c.138]


Смотреть страницы где упоминается термин Модуль упругости режима деформации: [c.133]    [c.112]   
Резиновые технические изделия Издание 2 (1965) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Деформация режимы

Деформация упругая

Модуль

Упругий модуль



© 2024 chem21.info Реклама на сайте