Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность наполнителей

    Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных у- и р-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а -переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя Хг, Кг и Лз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а б-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу. [c.129]


    Как известно, невулканизованная резиновая смесь представляет собой каучуковую эластичную матрицу, в которой более или менее равномерно распределены частицы сажи (рис. 1). Свойства резиновых смесей и вулканизатов сильно зависят от характера взаимодействия каучука с активным наполнителем, так как [c.72]

    На рис. 1.18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у, у и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука -процесс —потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе Я- процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса а, X и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров. [c.61]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]

    Известно, чтй ряд каучуков при серной вулканизации Дак)Т ненаполненные резины с высокой прочностью. Это —каучуки регулярного строения, способные к кристаллизации НК, синтетический полиизопрен с высоким содержанием г ис-1,4-звеньев, некоторые типы этилен-пропилен-диеновых каучуков, транс-полипентена-мер, полихлоропрен и др. При растяжении резин на основе этих каучуков образуются микрокристаллиты, которые играют роль полифункциональных узлов сетки по-видимому, их действие сходно с действием частиц активного наполнителя. Действительно, нарастание напряжения при растяжении резин, полученных на основе кристаллизующихся каучуков, происходит быстрее, чем при растяжении резин на основе аморфных каучуков, имеющих равную плотность узлов вулканизационной сетки [35]. [c.85]

    Важное значение имели исследования, проведенные на Опытном заводе под руководством С. В. Лебедева, по изучению структуры и свойств каучука СКБ, его стабилизации и разработке методов изготовления резиновых изделий на его основе. Этими исследованиями была определена необходимость обязательного применения активных наполнителей для резин из каучуков нерегулярного строения, что было в дальнейшем использовано при освоении всех каучуков этого типа. [c.10]


    В последнее время был выявлен еще один структурный параметр каучуков, который может оказывать существенное влияние на прочностные свойства резин. Речь идет о содержании дискретных полимерных частиц —частиц микрогеля, имеющих высокую молекулярную массу. Строение частиц микрогеля растворной полимеризации является более благоприятным, чем частиц эмульсионного микрогеля [12]. Благодаря большому количеству свободных концов, способных взаимодействовать с поверхностью сажевых частиц, а также благодаря специфическому строению, напоминающему строение полифункциональных узлов, частицы растворного микрогеля играют роль активного наполнителя. В то же время частицы плотного микрогеля эмульсионной полимериза- [c.86]

    При введении в полиизобутилен активных наполнителей (сажа, графит, тальк и др.) увеличивается его прочность, уменьшается текучесть и улучшается стойкость к действию света. [c.14]

    Ведутся исследования путей физической и химической модификации асфальтенов с целью практического использования в различных областях техники, например, активные наполнители в композициях на основе высокополимерных материалов, адсорбенты, матрицы для ионообменных материалов, исходный материал для получения разных видов технического углерода и т. п. [c.109]

    Удельная поверхность, физико-химическая природа — поверхностная активность наполнителя и связующего — являются важнейшими факторами, влияющими на прочность структуры наполненных систем. Только при определенном соотношении Уд.ф/ д.с наполненная система имеет максимальное число контактов наполнителя со связующим, обеспечивающее максимальную прочность структуры. [c.91]

    До настоящего времени белая сажа — двуокись кремния — является единственным промышленным белым наполнителем каучуков. В Советском Союзе и за рубежом ведется изучение возможности применения гидроокиси алюминия, [1—4] и окиси алюминия 15—7] в качестве активного наполнителя. Окись алюминия является лучшим наполнителем кремнийорганических каучуков [8]. [c.196]

    В промышленности производства полимерных материалов адсорбенты используют в качестве активных наполнителей, придающих изделию повышенную прочность. Так, изделия, изготовленные из саженаполненной резины, почти в 10 раз прочнее, чем изделия, изготовленные из резины, наполненной нейтральными наполнителями (см. разд. III.14). [c.129]

    Рис. I. 16 представляет собой схему структуры того же каучука, что на рис. I. 15, в который введен активный наполнитель, образовавший собственные разветвленные суперструктуры [36, с. 3] . Как отмечалось, здесь надо рассматривать три подсистемы наполнитель, мягкую составляющую каучука, образованную цепями, достаточно отдаленными от наполнителя, и жесткую составляющую, образованную граничными слоями со структурным дальнодействием [34, гл. VII]. Объемная доля жесткой составляющей— того же порядка, что и наполнителя. [c.56]

Рис. 1.16. Структура линейного полимера, содержащего активный наполнитель и сшитого химическими поперечными связями (резина). Рис. 1.16. <a href="/info/400739">Структура линейного</a> полимера, содержащего активный наполнитель и сшитого <a href="/info/729544">химическими поперечными связями</a> (резина).
    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]

    Процесс ф-релаксации наблюдается только в наполненном полимере, и с увеличением содержания активного наполнителя его вклад в общий релаксационный процесс, как и -процесса, возрастает. ф-Процесс связан с подвижностью коллоидных частнц наполнителя и в целом с перегруппировкой сетки, образованной частицами активного наполнителя. Относительно высокие значения времени релаксации и энергии активации процесса обусловлены заторможенной подвижностью частиц наполнителя, довольно прочно связанных между собой и с полимером. Размеры релаксаторов этого процесса, рассчитанные из формулы (1.24), практически совпадают с размерами частиц сажи, найденными методами электронной микроскопии (30—50 им). [c.63]

    Как отмечалось в 4 гл. I, структура некристаллических полимеров (а тем более полимеров с активным наполнителем) состоит из нескольких структурных подсистем, в которых подвижность сегментов различна. В результате кроме основного процесса структурного стеклования наблюдается несколько побочных процессов стеклования. Например, структуру эластомеров в первом приближении можно представить как состоящую из двух частей, причем одна часть состоит из свободных сегментов, тепловое движение которых квазинезависимо, а другая представляет собой распределенную по всему объему молекулярно-упорядоченную а [c.99]


    Параметр т зависит от степени активности наполнителя. [c.174]

    Структурные элементы, из которых образованы гибкоцепные полимеры (мелкомасштабные элементы, сегменты, надмолекулярные образования в виде микроблоков, частицы активного наполнителя, диполь-дипольные локальные поперечные связи, поперечные химические связи и т. д.), играют в релаксационных процессах роль кинетических единиц различных размеров и разной подвижности. Каждый тип кинетических единиц характеризуется своим наиболее вероятным временем релаксации Тг, =1, 2,. .., п (где п — число кинетических единиц различных типов и, следовательно, число различных релаксационных переходов, которые на спектре времен релаксации проявляются в виде тех или иных максимумов). [c.129]

    Литьевые резины, полученные на основе олигодиендиизоциа-натов, характеризуются, в отличие от уже нашедших широкое промышленное применение полиэфируретанов, высокими диэлектрическими свойствами, морозостойкостью, гидролитической устойчивостью, а также способностью к усилению активными наполнителями и к вулканизации серой или перекисями, совместимостью с маслами и с каучуками общего назначения. [c.14]

    В динамических условиях испытания полиуретанов наблюдается падение напряжения при удлинении, т. е. жесткие полиуретановые (или полимочевинные) сегменты ведут себя подобно активным наполнителям [64]. [c.545]

    Вулканизаты на основе бутадиеновых каучукоб всех типов характеризуются удовлетворительными физико-механическими показателями только в присутствии активных наполнителей. В ка  [c.186]

    Ненаполненные резины (вулканизаты) из бутадиен-стирольных и а-метилстирольных каучуков имеют низкое сопротивление разрыву (2,5 МПа). В связи с этим применяются активные наполнители каучуков, главным образом сажи, различающиеся способом производства, дисперсностью, структурностью и др. Наиболее распространены высокодисперсные и высокоструктурные печные сажи типа SAF (ПМ-130), ISAF (ПМ-100), HAF (ПМ-70). Применяются также высокодисперсные сажи с низкой и очень низкой структурностью. Для изготовления протекторов автомобильных шин преимущественно используется сажа HAF, а также ISAF. Помимо указанных применяются активные канальные сажи типа MP (ДГ-100), ЕРС и др. Для получения белых и цветных резин при- [c.264]

    Развиваются работы по получению привитых сополимеров с пространственной сеткой на основе жидких каучуков и олиго-эфиракрилатов [66, с. 16]. Реакции в таких композициях приводят одновременно к вулканизации, прививке и гомополимеризации При этом гомополимер, являясь, как правило, нежелательным побочным продуктом, в данном случае выполняет роль активного наполнителя. Из жидких олигодиенов и олигоэфиракрилатов без введения специальных наполнителей методом литья были получены резиновые изделия, дтличающиеся высокими прочностью, стойкостью к старению и другими ценными свойствами. [c.445]

    Вследствие большой разницы констант соответствующих реакций при одностадийном способе получения эластомеров сначала протекает практически только реакция уретанообразования и лишь после исчерпания гидроксильных групп начинается тримеризация оставшихся изоцианатных групп с образованием трехмерных узлов. Таким образом, при отношении диизоцианат полимердиол меньше двух происходит удлинение цепи и снижение густоты сетки тем больше, чем меньше избыток диизоцианата. Если указанное отношение больше двух, происходит сотримеризация мономерного и полимерного днизоцианата с образованием блоков активного наполнителя в узлах сшивки (рис. 6). [c.446]

    В качестве наполнителей, используемых в производстве резин для их упрочнения, применяют порошкообразные и волокиисП)1е ыатерпа.чы. Порои кообразные наполнители подразделяются на активные п неактивные. Примерами активных наполнителей яв- [c.382]

    С другой стороны, следует полагать, что целлюлозные наполнители не должны повышать сопротивление действию излучения у большинства органических систем. Кислородсодержащие органические вещества относительно чувствительны к излучению, и пластики с целлюлозными наполнителями разрушаются быстрее, чем не-наполненные смеси. Влияние химически активных наполнителей типа коллоидной сажи и в некоторых случаях стекловолокна лред-сказать трудно. Было замечено, что саженаполненные резиновые смеси более устойчивы к действию радиации, чем ненаполненные. Стекловолокно обычно действует как инертный поглотитель энергии излучения. [c.163]

    Рассматриваются физические и химические свойства веществ, нерастворимых в хинолине, входящих в состав пека, их влияние на формирование свойств пекового кокса и углеродных материалов. Показано, что нерастворимые в хинолине вещества выполняют роль поверхностно активного наполнителя, обусловливают спекающие и коксообразующие свойства пека. Они по-разному влияют на формирование свойств мелко- и крупнозернистых углеродных материалов для мелкозернистых материалов проявляют себя как балластная примесь, ухудшающая овойства 1графита, для К1ру1пн0зер1нистых — при содержании в пеке до определенного оптимального значения улучшают некоторые характеристики графита. Содержание нерастворимых в хинолине веществ в пеке необходимо согласовывать с требованиями к гранулометрическому составу коксовой шихты, рецептурным составом коксо-пековой композиции и целевым назначением графита Табл. 1. Список лит. 2 назв. [c.264]

    Количество сажекаучукового геля, т. е. количество нерастворимой части сырой резиновой смеси, зависит от активности наполнителя [1], молекулярного веса каучука [3], степени диоперсности сажи 14]. Догадкин 15], Новиков [3] 1П01казали, что образование геля обусловлено возникновением сажевой сетки, степенью переплетения гибких цепных молекул каучука и, в конечном счете, зависит от величины энергии межмо-лекулярного взаимодействия каучука с сажей. В ряде работ образование сажекаучукового геля связывается с эффектом усиления каучука, увеличением модулей и износостойкости (3, 5]. [c.200]

    В исследованных смесях трикозан ведет себя как инертный наполнитель по отношению к нафталину. Наоборот, асфальтены относятся к активному наполнителю, так как на участке аб вызывают уменьшение теплоты плавления нафталина, причем на интенсивность процесса сольватации существенное влияние оказывает природа асфальтенов. В присутствии в смеси асфальтенов арланской нефти энергетические характеристики структурообразования выше, чем в случае асфальтенов гудрона западно-сибирской нефти. Это обусловлено большим количеством алифатических фрагментов в структуре асфальтенов арланской нефти, причем длина алифатических цепочек может достигать 35 атомов углерода. Асфальтены гудрона западно-сибирс-кой нефти содержат более короткие алифатические радикалы (3-4 атома углерода), и структура таких асфальтенов имеет более высокую степень ароматизации вследствие термического воздействия на нефтяную систему при получении гудрона. Это увеличивает скорость и уменьшает энергетические затраты в процессе сорбции такими асфальтенами молекул нафталина. [c.156]

    Наполнители (активные и инертные) изменяют свойстаа резин в широких пределах. К активным наполнителям относят технический углерод, коллоидную кремневую кислоту, окись цинка, окись магния. Технический углерод, влияющий на износостойкость, является одним из наиболее важных наполнителей. Наиболее применим технический углерод следующих марок ПМ-120, ПМ-100, ДГ-100, ПМ-90, ПМ-75,. .., ПМ-15. Первая буква в обозначении марки означает способ производства (Д — диффузионный, П — печной), вторая — использованное сырье (М — масло, Г — газ), цифра соответствует его удельной поверхности в м /т. Износостойкость резин возрастает при повышении дисперсности технического углерода. Так, истираемость резин на основе БСК, содержащего 50 масс. ч. технического углерода ПМ-120, ПМ-100 и ПМ-75, составляет соответ- [c.26]

    Таким образом, выход выделяемого препаративной хроматографией продукта, кроме факторов, связанных с самим процессом хроматографирования, определяется и факторами, действующими в процессе улавливания параметрами приемника-ловушки, его геометрией и поверхностью контакта скоростью газа-носителя адсорбционной активностью наполнителя кратностью циркуляции газа в ловушках степенью разбавления газом-носителем температурой термостатирования ловушек и природой, главным образом летучестью улавливаемого вещества. [c.207]

    При наличии реальных (химических) сеток или суперсеток — за счет кристаллических областей или активного наполнителя— границы областей 1, II, III, разумеется, смещаются, а ширина их меняется. Стрелка 3 может теперь приобрести вполне реальный смысл, характеризуя разрушение суперсеток (в частном случае это будет плавление кристаллитов) или переход к химическому течению. Читатель без труда представит себе соответствующий рассматриваемой ситуации вариант с исчезновением 7т и появлением новой характеристической температуры, условно обозначенной 7х.п и соответствующей появлению текучести из-за плавления или разрушения сетки. [c.80]

    Особенности строения полимероз и существование различных форм их молекулярной подвижности приводят к появлению различных релаксационных процессов, каждый из которых связан с тепловым движением тех или иных структурных элементов. Поведение последних в целом может быть описано спектром времен релаксации, в котором за быстрые релаксационные процессы ответственны мелкомасштабные движения макромолекул, а времена релаксации, связанные с подвижностью более крупных участков самих макромолекул (сегментов и субцепей) и с подвижностью различных элементов надмолекулярных структур и частиц активного наполнителя, могут быть довольно большими и распределяться в большом диапазоне временной шкалы. Соответствующие им релаксационные процессы протекают относительно медленно. [c.125]

    Процессы релаксации, связанные с молекулярной подвижностью коллоидных и квазиколлоидных структур в наполненных полн 1е-рах, относятся к медленным релаксационным процессам. В настоящее время установлена связь между структурными особенностями ненаполненных и наполненных активными наполнителями эластомеров и их релаксационными процессами. Выявляются релаксационные процессы, связанные как с надмолекулярной организацией, [c.125]

    Введение активного наполнителя в эластомер приводит к образованию полимерной коллоидной системы, структура которой описывается моделью, согласно которой полимерная часть системы состоит из мягкой и твердой составляющих. При этом под твердой составляющей понимается связанный, т. е. адсорбированный на частицах наполнителя, полимер. Дакой адсорбированный слой полимера более жесткий, чем остальная, не связанная с наполнителем масса эластомера. Частицы наполнителя, связывая макромолекулы полимера, также играют роль узлов, но более прочных, чем микроблоки. [c.127]


Смотреть страницы где упоминается термин Активность наполнителей: [c.191]    [c.416]    [c.245]    [c.435]    [c.438]    [c.182]    [c.26]    [c.9]    [c.295]    [c.416]    [c.57]    [c.58]    [c.106]    [c.161]   
Технология резины (1967) -- [ c.172 ]

Физическая химия наполненных полимеров (1977) -- [ c.149 ]

Технология резины (1964) -- [ c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Активность наполнителя удельная

Активные наполнители

Активные наполнители

Активные наполнители и структура наполненных эластомеров

Использование поверхностно-активных веществ при диспергировании пигментов и наполнителей

Кинетическая активность наполнителей

Наполнители

Наполнители активные для каучука

Наполнители каучуков активные усилители

Наполнители обработка поверхностно-активными веществами

Поверхностно-активные вещества наполнителями

Поверхностно-активные вещества стабилизаторы наполнителей

Понятие об активности наполнителей и их усиливающем действии

Применение поверхностно-активных веществ в производстве пигментов и наполнителей

Реологические свойства смесей эластомеров с активными наполнителями. К. МакКейб

Структурная активность наполнителя

Термодинамическая активность наполнителей

Физико-химические основы модифицирования пигментов и наполнителей поверхностно-активными веществами

Химическая природа сцеплений полимер—наполнитель и активные центры на поверхности частиц сажи

Эластомеры, сшивание активные наполнители



© 2025 chem21.info Реклама на сайте