Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы уран молибден цирконий

    Определение в циркон-, уран-, молибден-вольфрамовых сплавах с применением ПАР [c.143]

    При анализе сплава уран — молибден 1 г образца растворяют в 20 мл 40% -ной азотной кислоты, добавляют 20 мл 50% -ной серной кислоты и выпаривают до появления паров. После охлаждения и добавления 25 мл воды вновь следует выпаривание. Измерение оптической плотности производят при 430 ммк. Конечная концентрация серной кислоты в кювете соответствует 3,6 М.. Такая же концентрация соблюдается и для сплава, содержащего уран, титан и цирконий. [c.108]


    Перитектические сплавы (молибден—алюминий, молибден— кобальт, молибден—железо, молибден—никель, молибден—уран, молибден—цирконий). [c.490]

    В качестве горючего в ядерных реакторах уран может применяться в сплавах с хромом, молибденом, цирконием и кремнием. Известно о применении в качестве горючего сплава урана с алюминием. [c.512]

    Гетерогенные реакторы загружаются ураном (природным или обогащенным) иногда с добавкой тория. В литературе описаны тепловыделяющие элементы различного состава и формы. Применяются металлический уран, двуокись урана, металлический торий, сплав урана с алюминием, сплав урана с цирконием, сплав урана с молибденом и многие другие комбинации различных элементов с ураном и его изотопами или с плутонием [10, И ]. Для предохранения от коррозии тепловыделяющие элементы покрывают оболочкой из алюминия или его сплавов, из циркония или из нержавеющей стали. Тепловыделяющие элементы различаются и по форме применяют цилиндрические блоки разной длины (100— 300 мм) и диаметра (22,8—28 мм), стержни более 2 м длиной и диаметром 27 мм, трубки, пластины и прочее. [c.40]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Взаимодействие с металлами. Молибден образует сплавы со многими металлами. Двойные сплавы молибдена можно разделить на три основные группы 1) сплавы с полной взаимной растворимостью при всех температурах или в широком интервале температур 2) сплавы с перитектикой 3) эвтектические сплавы [75]. К первой группе относятся сплавы с хромом, танталом, титаном, вольфрамом, ниобием ко второй группе — сплавы с алюминием, кобальтом, железом, никелем, ураном, цирконием, марганцем к третьей группе — сплавы с бериллием, углеродом, бором. Молибден не образует сплавов с медью, серебром, свинцом, магнием и некоторыми другими металлами. [c.299]

    Исследовано коррозийное действие воды и воздуха на многочисленные сплавы урана. Более или менее подробно изучены системы из урана со следующими элементами натрий калий, медь, серебро, золото, бериллий, магний, цинк, кадмий, ртуть, алюминий, галлий, индий, церий, лантан, неодим, титан, германий, цирконий, олово, торий, ванадий, ниобий, тантал, висмут, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, рутений, родий, палладий, осмий, иридий и платина. В большинстве случаев полная фазовая диаграмма еще не разработана. Недавно опубликованы описания систем уран—алюминий и уран—железо [11], уран—вольфрам и уран—тантал [12], уран—марганец и уран—медь [13]. g g [c.152]

    До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий. [c.251]

    Метод пригоден для определения титана в его сплавах с ураном, цирконием, молибденом, вольфрамом, ниобием. [c.136]

    Методом кремнемолибденовой сини кремний определяют в чугуне и стали [52, 53, 63—65], никеле и его сплавах [6, 49, 66, 67], меди и ее сплавах [4, 49, 68], молибдене [69], алюминии и его сплавах [4, 56, 58, 70], уране [2, 34, 71, 72], цирконии, бериллии и кальции [58], плутонии [2], хроме [73], сурьме, галлии, индии и таллии [61], титановых сплавах [74], ферросилиции [75], соединениях фосфора [2, 4, 14—16, 62, 76], боре [77], щелочах [78, 79[, хлористом натрии [80], фториде натрия и перекиси водорода [81], воде [55, 59, 82], органических соединениях [83—85], биологических материалах [86, 87], растениях [88[. [c.220]

    В настоящее время как в зарубежной, так и в отечественной практике основными переплавляемыми материалами являются специальные стали, титан и его сплавы в больщих количествах переплавляются также молибден и его сплавы, цирконий. В последние годы в этих печах начали переплавлять гафний, вольфрам тантал, уран, ниобий, ванадий и ряд других металлов. В табл. 1 приведены имеющиеся в литературе данные по физическим свойствам некоторых из этих металлов. [c.5]

    Новые задачи в деле борьбы с коррозией возникают не только в связи с усложнением условий службы металла. Это связано и с тем, что номенклатура и число широко применяемых металлов с ходом технического прогресса сильно возрастают. Если на заре человеческой культуры применялись чаще благородные металлы золото, медь (бронза), олово, свинец и лишь ограниченно железо, то позднее основное распространение получают менее благородные, железные сплавы. В настоящее время наиболее важное значение имеют сплавы на основе железа (сталь, чугун). Одновременно с этим самое широкое применение находят сплавы алюминия, магния, по природе своей гораздо менее устойчивые к коррозии. Дальнейшие запросы техники выдвигают проблему практического использования, а значит, и защиты от коррозии таких металлов, как титан, цирконий, вольфрам, молибден, германий, индий, рений, уран, торий и ряд других. Наконец, всеобъемлющее значение приобретает борьба с коррозией вследствие непрерывного и все более бурно увеличивающегося из года в год общего запаса металлических материалов в виде эксплуатирующихся человечеством металлических конструкций. [c.10]

    Для сплава уран—молибден—ниобий, кроме серной кислоты той же концентрации, в растворе находится муравьиная кислота до 0,2 М. Поправку на поглощение при 430 ммк титана, молибдена, циркония, ниобия определяют по искусственно приготовленным шесям из урана и указанных элементов. Ошибка определения урана составляет 0,1% (отн.). [c.108]

    Определение ниобия в сплавах с молибденом, ураном, цирконием и вольфрамом [186]. Определению 0,25—2% ниобия с использованием ПАР в оксалатном растворе не мешают до 5 мг XV, до 10 мг Мо и и, до 1 лгг 2г. При добавлении 0,25 мл 0,025 М раствора ЭДТА определению не мешают до 50 мкг А1, Со, Ре и N1, мешает тантал. [c.130]

    Обогащенный уран, используемый в качестве атомного горючего, входит обычно как меньший компонент в состав алюминиевых и циркониевых сплавов. Если естественный или слабообогащенный уран используется в чисто металлическом виде, он подвергается тщательной температурной обработке, с тем чтобы максимально уменьшить влияние радиации на физические и механические свойства. Стойкость естественного урана к радиационным повреждения и коррозии может быть повышена сплавлением его с молибденом, цирконием или ниобием. В качестве расплавленного металлического реакторного горючего (см. раздел 14.7) используются растворы урана в расплавленнол висмуте, суспензии интерметаллических соединений урана в металлах с низкой температурой плавления и эвтектические сплавы [c.109]


    Твэлы, нашедшие применение совсем недавно, состоят из уран-циркониевого и уран-молибденового сплавов, покрытых цирконием, или из сплава на основе циркония и карбида урана, локрытого нержавеющей сталью. Для увеличения термической стойкости (и сопротивляемости коррозии) твэлов алюминий был заменен цирконием. Такие реакторы могут работать при достаточно высоких температурах. Чтобы стабилизировать изотропную уфазу урана и, следовательно, уменьшить радиационное повреждение урана, к последнему добавляется молибден. Для достижения более высоких рабочих температур и более высоких степеней выгора- [c.201]

    Очень широко применяют данный реактив для травлеция циркония и его сплавов с магнием, никелем, кремнием, бором, железом, ниобием, оловом, ураном, молибденом, медью, алюминием [34]. Можно последовательно травить данным реактивом и реактивом № 1. При исследовании макроструктуры циркониевых сплавов реко- [c.77]

    Методы горячей обработки урановых сплавов делятся на две категории 1) методы горячей обработки в области температур у-фазы и 2) методы обработки давлением в области высоких температур а-фазы. Из числа исследованных к настоящему времени элементов периодической системы три (ниобий, титан и цирконий)образуют с у-ураном непрерывный ряд твердых растворов, растворимостью (молибден — до 42 ат. % и ванадий —до 12 ат. %). Если говорить об обработке сплавов, наиболее пригодных для изготовления тепловыделяющих элементов и поэтому наиболее подробно изученных (особенно это относится к сплавам урана с молибденом, ниобием и цирконием), то все преимущества оказываются на стороне обработки при температурах у-области. Причина этого заключается в том, что у-фаза, обладает гораздо более высокой пластичностью, чем а-или Р-фаза. Кроме того, уфазы этих сплавов относительно устойчивы даже при комнатной температуре, обладают повышенной размерной устойчивостью при циклической термообработке И устойчивы против коррозии в горячей воде. Поэтому нормально эти сплавы обрабатываются путем ковки, прокатки или прессо-рания в у-фазе и закалки при комнатной температуре в тех случаях, когда это содействует максимально возможной стабилизации у-фазы. [c.436]

    Значительно более эффективными и экономически выгодными могут оказаться методы переработки ядерного горючего, не связанные с применением водных растворов. Первоначальный этап растворения в этом случае опускают, чем в большой степени облегчается превращение нужного материала в металл или окись на последнем этапе. Разработке таких методов было посвящено значительное число исследований. Предложен, например, метод отделения урана и плутония от продуктов деления в виде летучих гексафторидов UFe и PuFe, а также большое число пирометаллурги-ческих методов, один из которых, состоящий в очистке расплава, использовали для переработки ядерного горючего реактора EBR-II. В этом случае урановые тепловыделяющие элементы расплавляют в тиглях из окиси циркония при температуре 1300° в инертной атмосфере. Многие продукты деления, например инертные газы, щелочные и щелочноземельные металлы и кадмий, отгоняются другие образуют окислы и отделяются со слоем шлака. Однако отдельные продукты деления, например благородные металлы и молибден, остаются в расплаве с ураном . Из этого сплава при дистанционном управлении изготавливают (с добавлением свежей порции топлива взамен выгоревшей в реакторе) новые тепловыделяющие элементы, которые возвращаются в реактор. Относительная простота этого метода и его преимущества очевидны. [c.487]

    Из урановой руды необходимо получить уран в форме, пригодной для использования в ядерных реакторах. Материалом для ядерпых реакторов часто служат компактный металлический уран, сплавы его с алюминием, цирконием, молибденом, никелем и другими металлами, обладающими низкими эффективными сечениями захвата. В некоторых случаях для реакторов используют расплавы урана (например, в висмуте) или суспензии интерметаллических соединений в жидких металлах (например, суспензия иРЬз в жидком свинце). [c.8]


Смотреть страницы где упоминается термин Сплавы уран молибден цирконий: [c.628]    [c.293]    [c.627]    [c.375]   
Технология производства урана (1961) -- [ c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Молибден сплав с ураном

Молибден сплавы

Сплавы с цирконием

Уран от молибдена

Уран от циркония



© 2024 chem21.info Реклама на сайте