Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий, торий и бериллий Цирконий и гафний

    Металлургия. Создание атомной промышленности потребовало разработки многих металлургических процессов, включающих на некоторых стадиях применение инертных сред (аргона или гелия) высокой чистоты [31]. Речь идет о получении урана, плутония, тория, бериллия, циркония, гафния, ниобия, лития, щелочноземельных и щелочных металлов, тантала, титана. Велика роль инертных газов в порошковой металлургии, в технологии полупроводниковых материалов — германия, кремния [32], а также при получении некоторых специальных сортов нержавеющей стали. [c.17]


    Более тридцати элементов периодической системы Д. И. Менделеева образуют тугоплавкие окислы. Наибольшую ценность для техники высоких температур представляют окислы с температурой плавления выше 2000° С. Такие окислы образуют бериллий, магний, кальций, стронций, алюминий, редкоземельные элементы, уран, торий, титан, цирконий, гафний и хром. [c.291]

    Особо чистые металлы играют огромную роль в развитии современной науки и техники. Так, атомная энергетика потребляет большое количество металлов и других материалов высокой степени чистоты. Кроме урана и тория, являющихся основными видами ядерного горючего, широкое применение в атомной энергетике находят литий, бериллий, цирконий, ниобий, тантал, натрий, алюминий, кадмий, платина, висмут. В уране, поступающем в атомные реакторы, примесь бора не должна превышать стотысячных долей процента. Цирконий, идущий на оболочки урановых стержней, подвергается сложной очистке от примеси гафния. Создание термоядерной энергетики потребует новых материалов — высокочистых металлов содержание отдельных примесей в таких материалах должно быть на уровне 10 —10 1 %. [c.82]

    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию, гафнию, кобальту, готовятся к печати монографии по аналитической химии никеля, бериллия, ниобия и тантала [c.4]

    БЕРИЛЛИЙ, УРАН, ТИТАН. ЦИРКОНИЙ, ТОРИЙ, ГАФНИЙ, СКАНДИЙ, ИТТРИЙ, ЦЕРИЙ, ЛАНТАН И ДРУГИЕ РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ, ТАЛЛИЙ, ИНДИЙ, ГАЛЛИЙ [c.584]

    Литий, рубидий, цезий, бериллий Бериллий, титан, цирконий, гафний, торий, тантал, уран Германий, молибден, вольфрам, рений [c.420]

    Таким образом, в книге рассматриваются следующие редкие металлы литий, рубидий, цезий, бериллий, скандий, иттрий, лантан и другие элементы группы редких земель, торий, уран, галлий, индий, таллий, германий, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам и рений — всего 44 металла, а также селен и теллур. [c.16]

    Принцип метода. Алюминий осаждают из раствора в виде бензоата при одновременном маскировании следов железа тиогликолевой кислотой (восстановление железа до двухвалентного). Осаждение алюминия бензоатом натрия весьма селективно. Ему мешает только присутствие титана, циркония, гафния, тория и бериллия, однако в большинстве легких сплавов указанные элементы не встречаются. Выделенный бензоат алюминия после растворения определяют обратным комплексометрическим титрованием хлоридом трехвалентного железа. [c.488]


    Отделяют элементы, осаждаемые сероводородом. Затем изолируют группу редких земель путем осаждения их щавелевой кислотой в слабокислой (солянокислой) среде. В осадок выпадают редкие земли (за исключением иона Се +), иттрий и торий, а также частично щелочноземельные металлы, которые могут быть увлечены осадком редких земель. К фильтрату после отделения группы редких земель прибавляют аммиак и хлорид аммония и осаждают гидроокиси трех- и четырехвалентных элементов — алюминия, железа, хрома, церия (Се " "), титана, циркония, гафния, таллия, скандия, галлия, индия, урана и бериллия. [c.169]

    В условиях определения бериллия (в растворе, содержащем комплексон III, аскорбиновую и лимонную кислоты, а также пиросульфит натрия) возникает также флуоресценция скандия, иттрия, циркония, гафния и тория. Однако со скандием и иттрием яркость флуоресценции раствора в 200 раз слабее, чем с бериллием, а для остальных элементов—в 2000—3000 раз слабее бериллия. В описанных условиях слабая флуоресценция для лития, кальция и цинка, возникающая при возбуждении флуоресценции ультрафиолетовым светом, не была обнаружена . Определение долей микрограмма бериллия еще возможно в присутствии алюминия, кальция, магния, марганца, молибдена, кадмия, свинца и цинка до 5 мг 350 мкг железа и 30 мкг хрома. При содержании титана более 200 мкг раствор становится мутным, и вследствие рассеивания света измеренная флуоресценция оказывается повышенной на 10—15%. [c.251]

    В книгу включены методы определения лития, рубидия, цезия, бериллия, скандия, лантанидов, иттрия, ванадия, ниобия, тантала, молибдена, титана, циркония, гафния, урана, тория, вольфрама, рения, технеция, галлия, индия, таллия, германия, висмута, селена и теллура. Приведены важнейшие органические реагенты для редких элементов, маскирующие вещества, произведения растворимости некоторых малорастворимых соединений. Указаны методы выделения редких элементов экстракцией. [c.2]

    Фотометрические методы используются для определения небольших количеств многих редких элементов бериллия в вольфраме и сплавах галлия, индия, таллия, редкоземельных элементов и германия в разнообразных объектах титана в горных породах, рудах, сплавах, в металлических вольфраме и цирконии тория в горных породах, цирконе и других материалах циркония в различных материалах ванадия в рудах, минералах, сплавах, сталях, металлическом цирконии ниобия в горных породах и минералах тантала в металлических цирконии, гафнии, ниобии висмута в металлическом молибдене молибдена в сплавах на основе титана, сталях и минеральном сырье селена и теллура в рудах и минералах рения в молибденсодержащих продуктах и в сплавах с танталом или вольфрамом. [c.22]

    III группы периодической системы, наиболее активные переходные металлы в их низщих валентностях, лантаниды и актиниды. К ней относятся бериллий, алюминий, скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, цинк, галлий, иттрий, цирконий, ниобий, индий, церий, гафний, тантал, таллий, торий, уран. Катионы третьей аналитической группы характеризуются тем, что их сульфиды и гидроокиси нерастворимы в воде, но растворимы в разбавленных минеральных кислотах. Катионы этой группы осаждаются сульфидом аммония или сероводородом из аммиачных растворов. [c.238]

    Группу входят алюминий, скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, бериллий, цинк,таллий, иттрий, цирконий, ниобий, индий, церий, гафний, тантал, таллий, торий, уран. [c.313]

    Если взять 12 максимальных (от 3,92 и выше) значений, приведенных в табл. 7а, то окажется, что они соответствуют литию в первой периодической группе бериллию, магнию, и кальцию—во второй группе бору, алюминию и лантану — в третьей группе (достаточных данных для скандия и иттрия не имелось) и, наконец, в четвертой группе — кремнию, титану, цирконию, гафнию и торию. Если же взять 12 максимальных значений в табл. 76 (от 3,50 и выше), то они будут относиться к тем же элементам, с той только разницей, что прибавится водород и не будет тория. Следует указать, что в обоих случаях элементы, соответствующие 12 максимальным значениям, образуют обособленную группу, в которой, за исключением скандия и иттрия, нет пустых мест. [c.95]

    Усилились работы по синтезу жаростойких неорганических веществ, температуры плавления которых лежат в пределах 2500—3500° и, может быть, выше. Это окислы магния, церия, бериллия, циркония, тория, а также бориды, нитриды, карбиды, в частности сплав карбидов титана и гафния. Установлено, что глубокая очистка способствует повышению их жаростойкости, механической и иногда химической прочности. Все ценные качества кварцевой керамики (электротехнические параметры, термо- [c.43]

    Г. От окислов группы Б (алюминия, циркония, гафния, тория) и хрома, железа, урана, ванадия, марганца, бериллия [c.157]

    Литий, рубидий, калий, цезий, радий, барий, стронций, кальций, натрий, лантан, магний, плутоний, торий, нептуний, бериллий, уран, гафний, алюминий, титан, цирконий, ванадий, марганец, ниобий, хром, цинк, галлий, железо [c.40]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]


    Алюминон дает с рядом катионов металлов (алюминия, бериллия, железа, хрома, ванадия, меди, галлия, титана, скандия, гафния,тория, циркония, церия) интенсивно окрашенные труднорастворимые лаки преимущественно красного цвета. Наиболее сильно окрашены соединения с алюминием, бериллием и железом. [c.109]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Литий, рубидий, калий, це зий, радий, барий, стронций кальций, натрий, лантан, маг НИИ, плутоний, торий, непгу нпй, берилли , уран, гафни) алюминий, титан, цирконий, ва надий, марганец, ниобий, хром цинк, галлий, железо [c.40]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    Начиная с III группы периодической системы, выделяются металлы подгрупп алюминия и скандия (в том числе лантаноиды и актиноиды), которые дают при осаждении сульфид-ионами гидроокиси Ме(ОН)а—бериллий, европий, иттербий Ме(ОН)з—алюминий, титан (III), хром (III), скандий, иттрий, лантан Ме(0Н)4— титан, цирконий, гафний, церий, торий, уран [МеОгЮН-ниобий, тантал. [c.187]

    Осаждение щавелевой кислотой. Щавелевая кислота образует малорасгворнмые оксалаты с катионами многих металлов. Оксалат аммония при pH —8 полностью осаждает ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, железа, золота, висмута, индия, олова, ниобия, тантала частично осаждает ионы лития, бериллия, магния, бария, радия, титана, циркония, гафния, тория, марганца, кобальта, никеля, ртути, таллия и свинца. При некоторых условиях осаждаются также ванадий и вольфрам. При pH 3—4 полностью осаждаются ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, тория и золота неполностью осаждаются ионы бария, тантала, марганца, кобальта, никеля, меди, серебра, цинка, кадмия, олова, свинца и висмута. [c.98]

    Таннин полностью осаждает тантал, ниобий и титан из слабокислого оксалатного, нолунасыщенного хлоридом аммония раствора. Цирконий, гафний, торий, уран, бериллий и алюминий в этих условиях не осаждаются. [c.673]

    Фишер и Бок разработали экстракционный метод выделения скандия из солянокислых растворов, содержащих роданид аммония, скандий количественно извлекается эфиром. Главное преимущество этого метода заключается в том, что он позволяет нацело отделить скандий от его ближайших аналогов — иттрия, РЗЭ и тория, которые, так же как кальций и магний, не переходят в Э фирный слой. Регулируя кислотность раствора, удается оставить в водном слое титан, цирконий, гафний, уран и двухвалентное железа. Вместе со скандием в эфирный слой переходят бериллий, алюминий, индий, молибден, рений и железо (III), которые, однако, можно частично отделить, обрабатывая эфирный слой чистой водой в присутствии аммиака. Фишер и Бок считают, что эфирно-роданидный метод ригоден как для препаративных, так и для аналитических целей. [c.310]

    Более поздний патент [23] еще в большей степени подкрепляет эту точку зрения. В нем предлагается при полимеризации этилена и других а-олефинов использовать хлористый алюминий и любой из перечисленных ниже металлов натрий, калий, литий, рубидий, цезий, бериллий, магний , цинк, кадмий, ртуть, алюминий, галлий, индий и таллий в сочетании с производными титана, циркония, гафния или тория. В число этих производных металлов IVA группы входят соли одноосновных органических кислот, например ацетат титана и пропионат циркония, комплексные соли двухосновных органических кислот, например натрийтитапмалонат и налийтитаноксалат, алкоголяты, например тетрабутилтитанат и дихлор-бутилтитанат, а также производные аминоспиртов, например триэтаноЛ-аминтитанат. Особо подчеркивается, что необходимо использовать такой свободный металл или элемент вместе с хлористым алюминием, так как в сочетании с производными металлов IVA группы он сам по себе не является эффективным катализатором полимеризации. Лучше всего брать [c.174]

    Детально разработана и, по-видимому, практически ценна реакция на цирконий [115]. Предложенный реактив — 3-оксифлавон. Флуоресценция соединения, образуемого с цирконием, чрезвычайно яркая, флуоресцирует и сам реактив, но его свечение (зеленое) отделяют с помощью светофильтра. Реакция в высокой степени специфична в кислой среде из 53 изучешшх катионов и анионов с 3-оксифлавоном флуоресцируют, помимо циркония, лишь торий, алюминий и гафний. Соединение оксифла-вона с цирконием устойчиво в 0,2 н серной кислоте, а в этих условиях не флуоресцируют ни алюминий, ни торий. Спектры флуоресценции, обусловливаемые цирконием и гафнием, перекрываются и по измеряемой яркости флуоресценции определяют суммарное содержание обоих элементов. ]Метод значительно упрощает определение циркония в рудах и особенно полезен, когда содержание двуокиси циркония в руде меньше 0,25%. Описан количественный метод определения циркония морином в среде 2 н НС1 в присутствии алюминия, бериллия, бария, сурьмы, олова, тория и урана, основанный на сравнении интенсивностей флуоресценции до и после добавления комилексона III. [c.176]

    Эти комплексы разрушаются фторидом и применяются для фотометрического определения фтора. Исследование влияния фторида на устойчивость комплексов титана, циркония, гафния, тория, алюминия, железа, бериллия и уранила с рядом органических реагентов (эриохромцианином К, пирокатехиновым фиолетовым, ализариновым красным 5, хинализарином, пурпурином, карминовой кислотой, кальционом, хромотропом 2В, стильбазо, ксилено- [c.295]

    Однократное осаждение циркония (гафния) по методу Клаасена и Виссера обеспечивает количественное отделение от больших количеств двухвалентных металлов, алюминия, хрома, железа (III) (до 10 г), урана, ванадия и молибдена вольфрам частично осаждается. Для количественного отделения от висмута, бериллия, тория, олова и титана необходимо двукратное осажденпе. Отделение от титана требует добавления 10 мл 3%-ной перекиси водорода и 40 мл 10%-ной мышьяковой кислоты. [c.180]

    Таннин полностью осаждает тантал, ниобий и титан из слабокислого оксалатного, полунасыщенного хлоридом аммония раствора. Цирконий, гафний, торий, уран, бериллий и алюминий в этих условиях не осаждаются. Таким способом достигается количественное отделение всех осаждающихся в этих условиях элементов от неосаждающихся . [c.615]

    Иное происходит при превращении плотных гексагональной или кубической упаковок в ОЦК структуру. Повышение температуры сопровождается не только увеличением энергии тепловых колебаний атомов, но и увеличением энергии электронов внешней оболочки ионов. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р -оболо-чек ионов, не перекрывающихся при низких температурах. Это приводит к переходу плотных низкотемпературных модификаций в высокотемпературные ОЦК структуры у натрия, бериллия, кальция, стронция, скандия, иттрия, всех лантаноидов, титана, циркония, гафния, таллия, актиния, тория, плутония и америция. По той же причине происходит превращение ГЦК у- Мп и у-Ре в ОЦК 8-модификации. Такой переход в эрбии, тулии, прометии, актинии был предсказан [57, 60] до его экспериментального подтверждения [116]. В результате повышения температуры разрушаются двухэлектронные ковалентные связи и образуются ионы с внешними р -оболочками, а следовательно, и ОЦК высокотемпературные модификации у урана, нептуния. Таким образом, повышение температуры сначала приводит к разрушению направленных двухэлектронных связей, сопровождающемуся переходом валентных электронов в свободное состояние и образованием плотных упаковок. При дальнейшем повышении температуры, вследствие перекрывания ортогональных р -оболочек, появляются ОЦК высокотемпературные модификации. [c.202]

    Позднее список катализаторов, пригодных для получения этилбензола из этилена и бензола, был значительно расширен. Была проверена каталитическая активность галоидных соединений многих металлов для проведения реакции в жидкой фазе. Галоидные соединения металлов, стоящих вблизи алюминия во второй, третьей, четвертой и пятой группах периодической системы элементов, одинаково относящиеся к воде и образующие двойные соли или двойные соединения, такие как хлористый бериллий, фтористый бор, четыреххлористый титан, четыреххлористые цирконий, гафний и торий, хлористый колумбий, хлористый тантал, подобно хлористому алюминию, катализируют реакцию между этиленом и бензолом с образованием этилбензолов от моно- до гексаэтилбензола. [c.262]

    Галоидные соединения металлов, стоящих вблизи алюминия во второй, третьей, четвертой и пятой группах периодической системы элементов, образующие двойные соли или двойные соединения, как хлористый бериллий, фтористый бор, четыреххлористые титан, цирконий, гафний и торий, хлористые ниобий и тантал, подобно хлористому алюминию катализируют реакции между этиленом (пропиленом) и бензолом, с образованием алкилбензолов от моно- до гексаалкилбензола. [c.293]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Отдельные тома серии Аналитическая химия элементов будут выходить са, юстоятельно, по мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, никелю, редкоземельным элементам и иттрию, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, алюминию, селену и теллуру. Готовятся к печати монографии по аналитической химии нептуния, кремния, германия, радия, золота и др. [c.4]


Смотреть страницы где упоминается термин Цирконий, торий и бериллий Цирконий и гафний: [c.125]    [c.313]    [c.261]    [c.75]    [c.64]   
Смотреть главы в:

Химическая технология ядерных материалов -> Цирконий, торий и бериллий Цирконий и гафний




ПОИСК





Смотрите так же термины и статьи:

Гафний

Цирконий, гафний, торий



© 2025 chem21.info Реклама на сайте