Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия сродства к электрону

    Энергию ионизации / и энергию сродства к электрону Е можно отнести как к единичному атому, так и к молю, т. е. к 6,02 10 атомов. В первом случае их выражают в электронвольтах (эВ/атом), а во втором — в килоджоулях (кДж/моль). [c.48]

    Энергня ионизации атомов фтора и хлора составляет соответственно 17,4 и 13,0 -эВ, а энергия сродства к электрону — 3,45 и 3,61 эВ. Для какого из этих элементов более характерно образование ионных соединений Указать знак заряда ионов галогенов в этих соединениях. [c.60]


    Окислительно-восстановительная способность простого вещества определяется в первую очередь важнейшими характеристиками его атомов — ионизационным потенциалом и энергией сродства к электрону. В рядах периодической системы энергия сродства к электрону и ионизационный потенциал возрастают слева направо (от металлов к неметаллам) стало быть, в этом направле- [c.54]

    Что показывает энергия сродства к электрону  [c.23]

    В 1934 г. Р. Малликен предложил другую интерпретацию понятия электроотрицательности атомов. Если энергия ионизации атома велика, то его тенденция к отдаче электронов выражена слабо если же велика энергия сродства к электрону, то атом стремится присоединять электроны. Общее стремление атома к присоединению электрона определяется арифметической полусуммой величин энергии ионизации и сродства к электрону. Приближенно величины электроотрицательности по Полингу и Малликену связаны линейно  [c.175]

    Химические элементы, атомы которых характеризуются низкими значениями ионизационных потенциалов и энергий сродства к электрону, представляют собой металлы элементы, атомы которых имеют высокие значения ионизационных потенциалов и энергий сродства к [c.20]

    Если неметалл выступает в качестве окислителя в газофазной или гетерогенной реакции газ-твердое, твердое-твердое, то количественной мерой его окислительной активности является энергия, необходимая для перевода элемента из менее активной формы (простого вещества) в атомарное состояние — энтальпия атомизации, ДЯа. Обычно эта стадия химической реакции окисления является лимитирующей. В табл. 11.5 наиболее типичные окислители — неметаллы расположены в экспериментально составленный ряд убывания их окислительной активности F2 > I2 > О2 > S > Н2 > N2. В данном ряду, в целом, повышается энергия атомизации простых веществ. В табл. 11.8 эти окислители охарактеризованы значениями энергии сродства к электрону и энергии атомизации. [c.338]

    Дать сравнительную характеристику атомов галогенов, указав а) характер изменения первых по- генциалов ионизации б) характер изменения энергии сродства к электрону. [c.221]

    Окислительная способность элементарных веществ. Окислительные свойства веществ обусловлены способностью их атомов притягивать к себе электроны извне. Окислительная активность атомов является функцией величины энергии сродства к электрону чем она выше, или чем больше электроотрицательность элементов, тем сильнее выражены окислительные свойства атомов. Из окислительных элементов самыми энергичными окислителями являются фтор, кислород, азот, хлор и бром, атомы которых характеризуются самыми большими значениями энергии сродства к электрону. Окислительными свойствами элементарных веществ обусловлена их способность вступать в реакции взаимодействия с различными восстановителями, в качестве которых могут выступать элементарные вещества, а также соединения. [c.47]


    Очевидно, энергия сродства к электрону у иона водорода равна энергии ионизации атома водорода ион.н- Тогда взаимодействие металла с кислотой схематично можно представить следующим уравнением  [c.118]

    Как было сказано, окислительный потенциал характеризует энергию сродства к электронам данной высшей валентной формы, находящейся в равновесии с определенной низшей валентной формой. Таким образом, знак и величина окислительного потенциала не зависят от того или другого порядка составления уравнения реакции. [c.352]

    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]

    Экспериментальные исследования и теоретические расчеты показывают, что атомы большинства химических элементов способны присоединять лишний электрон, превращаясь при этом в электростатически отрицательно заряженные ионы. Такие процессы сопровождаются выделением определенной энергии, которая и называется энергией сродства к электрону. Совершенно так же, как и ионизационный потенциал, энергия сродства к электрону неодинакова у различных атомов. Как правило, она возрастает при увеличении ионизационного потенциала и понижается при его уменьшении отметим вместе с тем, что энергия сродства к электрону обычно возрастает с уменьшением числа свободных, незанятых электронами позиций на энергетическом уровне в частности, энергия сродства к электрону у атома фтора выше, нежели у атома бора, поскольку атом фтора на валентном уровне имеет только одну незанятую позицию, а у атома бора на том же уровне — пять. У атомов благородных газов сродство к электрону отсутствует, поскольку в них электронные слои полностью укомплектованы. [c.20]

    Взаимодействие элементарных окислителей с различными соединениями. Различные элементарные окислители могут восстанавливаться при взаимодействии с соединениями, которые играют роль восстановителей как в сухом виде, так и в виде растворов, в том числе водных. Условием для протекания реакций между элементарными окислителями и сухими соединениями — восстановителями является меньшее значение энергии диссоциации соединения — восстановителя по сравнению с энергией образования продукта восстановления окислителя. Весь процесс взаимодействия складывается из ряда эндотермических и экзотермических стадий. Первая из них — диссоциация соединения — восстановителя, а вторая — образование продукта восстановления из элементарного окислителя и вещества, образовавшегося при диссоциации соединения — восстановителя. Окислительная активность элементарного вещества здесь также тем сильнее, чем больше энергия сродства к электрону его атома и чем меньше энергия диссоциации его молекулы. [c.48]

    Полусумма энергии ионизации I и энергии сродства к электрону Е называется электроотрицательностью X атома, т. е. [c.19]

    Энергия ионизации — это энергия, необходимая для удаления одного электрона из атома. Энергия сродства к электрону — это энергия, выделяющаяся в результате присоединения электрона к атому. Энергия сродства к электрону эквивалентна энергии ионизации соответствующего отрицательного иона, [c.173]

    Величина, характеризующая количество энергии, выделяемой ирм присоединении электрона к нейтральному атому (энергия сродства к электрону), среди элементов одного периода имеет максималь ное значение для галогена. [c.61]

    Несмотря на меньшую энергию сродства к электрону у фтора, чем у хлора (см. табл. 19.1), фтор является все же самым сильным окислителем среди галогенов. Объясняется это следующим. Превращение газообразного хлора или фтора в отрицательно заряженные ионы можно рассматривать как состоящее из двух стадий — диссоциации молекул на отдельные атомы [c.481]


    Вторая стадия процесса сопровождается выделением энергии (сродство к электрону) здесь выигрыш энергии в случае хлора (348,7 кДж/моль) несколько выше, чем в случае фтора (332,7 кДж/моль). [c.481]

    Благородные газы заканчивают собой каждый период системы элементов. Кроме гелия, все они имеют на внешней электронной оболочке атома восемь электронов, образующих очень устойчивую систему. Также устойчива и электронная оболочка гелия, состоящая из двух электронов. Поэтому атомы благородных газов характеризуются высокими значениями энергии ионизации и, как правило, отрицательными значениями энергии сродства к электрону. [c.492]

    Взаимодействие металлов и металлоидов с элементарными окислителями. При взаимодействии металлов и металлоидов с элементарными окислителями атомы последних восстанавливаются, притягивая к себе электроны. В идеальных условиях (газовое состояние восстановителя и продукта его окисления, атомарное состояние окислителя) реакция идет самопроизвольно, если энергия сродства к электрону атома окислителя превышает энергию ионизации атома восстановителя Е ан- Тепловой эффект реакции выразится разностью величин этих энергий. Однако в реальных условиях (твердое состояние восстановителя и продукта его окисления, молекулярное состояние окислителя) реакция осложняется процессами сублимации восстановителя, диссоциации молекул окислителя и кристаллизации продукта окисления. Энергии этих процессов субл. лисс и Е сказываются соответствующим образом на тепловом эффекте суммарного процесса, что в соответствии с законом сохранения энергии может быть выражено уравнением [c.46]

    Количественной характеристикой окислительной способности атомов является значение энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Энергия сродства к электрону значительно меныне энергии ионизации тех же атомов. Обе эти величины зависят от заряда ядра и размеров атома с увеличением заряда ядра они должны расти, а с увеличением радиуса атома уменьи1аться. [c.39]

    Атомы элементов-окислителей, принимая электроны, превращаются в отрицательно заряженные ионы. Энергия сродства к электрону атомов (как и ионизационный потенциал) закономерно изменяется в соответствии с характером электронных структур атомов элементов. В периодах слева направо сродство к электрону и окислительные свойства элементов возрастают. В группах сверху вниз сродство к электрону, как правило, уменьшается. [c.29]

    Е ,я, дисп — ее электростатическая и дисперсионная составляющие /, в, ф, Ег — составляющие энергии напряжения Еа — энергия активации е—энергия сродства к электрону (ЭСЭ) [c.5]

    Энергия сродства к электрону характеризует количество эне[>-гии, которое выделяется ГОгп—поглощается при присоединении электрона к нейтральному атому с образованием отрицательно заряженного иона. [c.48]

    Согласно представленному циклу процесс образования кристалли ческого хлорида натрия из твердого металлического натрия и ГН зообразного хлора возможен по двум путям. Первый путь состоит в превращении натрия и хлора в состояние ионов Na+ и С1 и образовании из них твердого хлорида натрия. В соответствии с определением понятия энергия кристаллической рещетки при образовании Na l из газообразных ионов выделяется энергия, равная по абсолютной величине Uo. Для получения ионов натрия требуется перевести металлический натрий в газообразное состояние. На это затрачивается теплота возгонки ДЯвозг. Затем нужно подвергнуть атомы ионизации, что требует энергии ионизации/ма. Для получения ионов хлора необходимо сначала разорвать связь в молекуле СЬ (на получение 1 моль С1 потребуется /г св), затем к атому хлора нужно присоединить электрон, оторванный от атома натрия при этом выделяется энергия сродства к электрону E u Все указанные здесь величины мo yт быть измерены. [c.153]

    Как известно (гл. I, 5), химическую природу элементов определяет со ютание восстановительных и окис,тн тельных свойств не1"1-тральных атомов, количественной характеристикой которых являются значения энергии ионизации и энергии сродства к электрону, которые изменяются в зависимости от изменения заряда ядра и размеров атома с увеличением заряда ядра энергии ионизации и сродства к электрону увеличиваются, а с увеличением радиуса атома уменьшаются. В связи с этим в периодах энергия ионизации слева направо — от щелочных метал.лов к инертным элементам—увеличивается, а в группах сверху вниз уменьп1ается. 3 побочных подгруппах закономерность изменения эиергии ионизации сложнее. Энергия сродства к электрону, вообще изменяющаяся симбатно с изменением энергии ионизации, увеличивается для элементов от четвертой до седьмой главных подгрупп и резко падает ири переходе от седьмой к восьмой главной подгруппе. [c.108]

    Вторая стадия окислительно-восстановительной реакции (присоединение двух электронов к иоиу меди) фактически идет между гидратированными ионами меди и электронами, оставщимися на поверхностп кристалла железа. Энергетический эффект этой стадии реакции, очевидрю, равен разности между энергией сродства к электронам иона меди (равной условной энергии ионизации атома меди ) и энерг ией дегидратации иона меди (равной энергии гидратации нона). [c.200]

    Прежде всего рассмотрим две очень важные характеристики атома — ионизащюниый потенциал и энергию сродства к электрону. Как увидим в дальнейшем, эти две величины оказывают существенное влияние на закономерности образования молекул атомами различных химических элементов. Поведение атома зависит от числа электронов на внешнем уровне и их расстояния от ядра. Чем выше энергетический уровень электрона, тем меньше энергия его связи с ядром, тем легче этот электрон удалить из атома. Справедливо и обратное утверждение чем более низкий энергетический уровень занимает электрон, тем больше энергия его связи с ядром, тем труднее удалить его из атома. [c.19]

    Ионная связь осуществляется в том случае, когда молекула образуется при взаимодействии атомов, которые сильно отличаются друг от друга по величине ионизационного потенциала, а также энергии сродства к электрону. В этом случае образование связи сопровождается оттягиваиием валентных электронов атома с мень- [c.21]

    Ковалентная связь осуществляется в том случае, когда молекула образуется при взаимодействии атомов, которые характеризуются близкими величинами ионизационных потенциалов и энергий сродства к электрону. В этом случае образование связи сопровождается вовлечением валентных электронов (по одному от каждого из двух взаимодействующих атомов) в так называемую электронную пару. Предельно коЕ>алентная связь образуется лишь в гомонуклеарных молекулах, т. е. в молекулах, состоящих из атомов одного и того же химического элемента (Hj, N3, О2, lj и т. д.). [c.22]

    Взаимодействие металлов с кислотами. В случае взаимодействия металлов с кислотами в качестве окислителя выступает водородный ион, который оттягивает электрон из атома восстановителя. В свою очередь в качестве восстановителя в этих реакциях могут участвовать только металлы (кроме самых малоактивных) металлоиды же вообще не способны окисляться водородными ионами. Реакции окисления металлов водородными ионами протекают в водных растворах тех кислот, анионы (или сами молекулы) которых не проявляют окислительных свойств. Энергия сродства к электрону у водородного иона, очевидно, равнл энергии ионизации атома водорода ион. н- Тогда взаимодействие металла с кислотой схематично можно представить следующим уравнением  [c.46]

    Окислительной способности, как известно, лишены металлы и благородные газы. Окислительная активность элементарного вещества тем больше, чем больше энергия сродства к электрону соответствуЕО-щих атомов и чем меньше энергия диссоциации молекул элементарных окислителей. Очевидно, что каждый период начинается элементарными [c.50]


Смотреть страницы где упоминается термин Энергия сродства к электрону: [c.40]    [c.41]    [c.51]    [c.118]    [c.120]    [c.221]    [c.222]    [c.22]    [c.55]    [c.214]    [c.48]    [c.173]    [c.268]    [c.72]   
Смотреть главы в:

Теоретическая неорганическая химия Издание 3 -> Энергия сродства к электрону


Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.23 ]

Кристаллохимия (1971) -- [ c.168 ]

Курс химии Часть 1 (1972) -- [ c.91 ]

Кристаллохимия Издание 2 (1960) -- [ c.189 ]

Теоретические основы органической химии (1964) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство

Сродство к электрону

Энергия электрона

Энергия электронная



© 2025 chem21.info Реклама на сайте