Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия диссоциации молекул

Рис. 31. Зависимость энергии диссоциации молекул от числа валентных электронов Рис. 31. Зависимость энергии диссоциации молекул от <a href="/info/264834">числа валентных</a> электронов

    Наличие в. молекуле СО шести связывающих электронов при отсутствии разрыхляющих электронов отвечает, как и в молекуле азота (рис. 51), образованию тройной связи. Это объясняет значительное сходство в свойствах свободного азота и оксида углерода,— панример, близость энергии диссоциации молекул (N2— 945, СО — 1076 кДж/моль), межъядерных расстояний в молекулах (соответственно 0,110 и 0,113 нм), температур илавления (63 и 68 К) и кипения (77 и 82 К). [c.150]

    Энергии диссоциации молекул N5 и Н2 соответственно равны 9456 и 436 кДж/моль. Вычислить атомарную теплоту образования аммиака и среднюю энергию связи М—Н. [c.77]

    Энергия диссоциации молекул азота на отдельные атомы составляет 945 кХ1,ж/моль. Равноценны ли связи в молекуле Nj Какая из них 6oj ее п )очная Вычислить среднюю энергию связи в электронвольтах на связь. [c.50]

    Имеется основание считать полные энергии диссоциации молекул На, Оа и НВ равными между собой. Собственные частоты колебаний молекул На, Оа и НО равны 132,4-101 93,71-101 и 114,8 101 соответственно. Подставив эти значения, получим  [c.342]

    Так как метод Хартри — Фока — Рутана приближенный, то, естественно, получаемые в его рамках значения физических величин отличаются от экспериментальных. Вот некоторые примеры. Энергия диссоциации молекулы Нг по методу МО в зависимости от способа расчета оказывается равной от 255,7 до 350 кДж/моль, что в любом случае заметно ниже экспериментальной величины (458,5 кДж/моль). Для молекулы кислорода соответствующие значения равны 136 кДж/моль (теория) и 496 кДж/моль (эксп.). А молекулы Ра по Хартри — Фоку вообще существовать не должно. Кроме того, метод молекулярных орбиталей приводит к неправильным волновым функ- [c.184]

    Зная ек и величину энергии возбуждения возникшего атома, можно рассчитать энергию диссоциации молекулы. [c.65]

Рис. 77. Определение энергии диссоциации молекулы Кз экстраполяцией по Берджу — Шпонер Рис. 77. <a href="/info/1506903">Определение энергии диссоциации</a> молекулы Кз экстраполяцией по Берджу — Шпонер
    Получаемые результаты можно продемонстрировать еще и такой схемой (рис. И, 2). Отложим по вертикали колебательные уровни нормального и возбужденного состояний. Место схождения этих уровней будет соответствовать наибольшей колебательной энергии, которой может обладать молекула в данном состоянии. Все последующие уровни не квантованы, так как молекула распадается на атомы. Эти неквантованные уровни заштрихованы косыми линиями. Если бы молекула, находясь в основном электронном состоянии, могла распадаться на атомы, то энергия ее диссоциации соответствовала бы Охам., совпадающей с величиной энергии, найденной на основании термохимических данных. Но фотохимический распад происходит в результате электронного возбуждения, обусловленного поглощением светового кванта. Энергия, необходимая для распада молекулы под действием поглощенного света, должна соответствовать величине /гv . Это и будет квант, отвечающий месту схождения полос. Энергиям электронного возбуждения молекулы и продуктов ее распада соответствуют величины hve и Нха- Величина О (у) соответствует энергии диссоциации молекулы в возбужденном состоянии. Таким образом, зная электронные уровни возникающих при [c.62]


    При бомбардировке молекул электронами наблюдается появление не только положительных, но и отрицательных ионов. Так, при бомбардировке метана электронами наблюдается появление ионов СНГ, СН , С и Н . Присоединение электронов к молекулам, радикалам или атомам обусловлено наличием у них сродства к электрону. При образовании отрицательных ионов очень часто энергия, выделяющаяся в результате присоединения электрона, превосходит энергию диссоциации молекулы. Например, для галогенов наблюдается процесс [c.78]

    В ряду Ва—Сг—N2 по мере заполнения связывающих молекулярных орбиталей уменьшается межъядерное расстояние и увеличивается энергия диссоциации молекул. В ряду N3—О2—Рг номере заполнения разрыхляющих орбиталей, наоборот, межъядерное расстояние возрастает, а энергия диссоциации молекул уменьшается. Молекула N02 вообще нестабильна вследствие одинакового числа связывающих и разрыхляющих электронов. Аналогично объясняется тот факт, что и остальные инертные газы одноатомны. Зависимость энергии диссоциации молекул от числа их валентных электронов иллюстрирует рис. 31. [c.55]

    Величина для этой реакции определяется как разность энергии диссоциации молекул, отсчитанных от низших уровнен [c.342]

    Иногда диссоциация молекул на поверхности является типичным гетерогенным процессом и вызвана тем, что, как легко показать, энергия диссоциации молекул, адсорбированных на поверхности, ниже, чем энергия диссоциации тех же молекул, находящихся в объеме. [c.83]

    Энергия возбуждения возникающего атома брома равна 0,454 эв, поэтому энергия диссоциации молекулы брома Д = 2,434 эа — 0,454 эв = = 1,980 38 = 45,62 ккал моль. [c.65]

    Итак, энергия диссоциации молекулы С1 эквивалентна лишь пяти миллионным частям массы электрона. Химические реакции обычно сопровождаются энергетическими эффектами в несколько электронвольт, тогда как ядерные энергии относятся к диапазону миллионов электронвольт. 1 МэВ на молекулу эквивалентен 96,5 млн кДж моль , что находится далеко за пределами энергии всех химических реакций. Это объясняет, почему в химических реакциях можно пользоваться двумя независимыми законами сохранения-массы и энергии. Взаимные превращения этих свойств материи в химических реакциях неразличимы. В отличие от этого для ядерных реакций взаимные превращения массы и энергии-дело совсем обычное здесь следует пользоваться более общим законом сохранения массы и энергии. В любой ядерной реакции сумма энергии и произведения массы на величину (с-скорость света) для всех реагирующих частиц и их окружения не изменяется в процессе реакции. [c.410]

    При столкновении фотохимически возбужденных молекул с невозбужденными молекулами иного сорта иногда наблюдается диссоциация. Очевидно, этот процесс происходит вследствие передачи (при столкновении) возбужденными молекулами сво- й энергии невозбужденным молекулам. Если переданная энергия оказывается больше энергии диссоциации, молекулы распадаются, Передача энергии возбуждения другим молекулам называется ударом второго рода. Процесс диссоциации в результате удара второго рода получил название сенсибилизированной диссоциации. Впервые это явление было открыто на примере появления атомов водорода в смеси ртути и водорода при облучении этой смеси светом с длиной волны, соответствующей линии возбуждения ртути. Этот процесс можно схематически изобразить следующим образом  [c.71]

    Процесс этот вполне правдоподобен, поскольку энергия диссоциации молекул водорода равна 4,4 эв, а первый уровень возбуждения ртути соответствует энергии 4,9 эв. [c.71]

    Энергия диссоциации молекул N2 и СО соответственно равна 945 и 1071 кДж/моль. Объяснить близость этих значений с позиций методов ВС и МО. [c.61]

    Для двухатомных молекул Хз с одинарной связью ее энергия совпадает с энергией диссоциации молекулы Х2 2Х. [c.49]

    Энергия диссоциации молекул водорода и энергия ионизации его атомов не зависят н и от прп Ю,ты металла, ни от нрироди растворителя и составляют 4,22 1 13,60 эВ соответственно. Таким образом [c.257]

    В настоящее время еще не разработаны методы, которые бы давали возможность теоретическим путем рассчитывать энергию связи с результатами, пригодными для применения в термодинамике химических реакций. Методы, основанные на использовании химического подобия веществ, пока не нашли успешного применения. В табл. IV,15 приведены энергии диссоциации молекул [c.161]

    Se. В работе энергия диссоциации молекул Sej на свободные атомы по уравнению Sea = 28е найдена равной (75,7 2,5) ккал/моль. См. также работу То же в работе [c.328]

    Те. В работе энергия диссоциации молекул Тег на свободные атомы по уравнению Тез = 2Те найдена равной (61,3 1,1) ккал/моль, Диссоциация на атомы изучалась в работе Т1. См, также работу [c.328]

    В отдельных случаях, одпако, достаточно знания энергии диссоциации молекулы, чтобы решить вопрос о том, в каком энергетическом состоянии находятся продукты диссоциации. Так, например, если энергия активирующего света Е удовлетворяет условию В < Е + А, где А — наименьшая энергия возбуждения продуктов диссоциации, то можно утверждать, что при поглощении этого света молекула диссоциирует на невозбужденные атомы. Из положения границы между сплошной и дискретной частями спектра поглощения молекул Оз и Зз следует, что при поглощении света в области сплошного спектра эти молекулы диссоциируют на нормальный и возбужденный атомы. [c.159]


    Заметим, что вследствие сравнительно большого теплового эффекта процесса Hg -Ь Н2 = Н П - Н (16,3 ккал) и сравнительно малой энергии диссоциации молекулы ПgH (8,5 ккал) образующаяся в этом процессе молекула HgH имеет большую вероятность распасться. Поэтому можно считать, что оба возможных пути вторичного процесса сенсибилизированной ртутью диссоциации водорода п конечном счете ведут к распаду молекулы На на два свободных атома. [c.167]

    Энергия диссоциации молекулы на ионы равна энергии взаимодействия ионов с обратным знаком  [c.91]

    Этот постулат предполагает, что в формуле орбитального приближения (19.2) для полной электронной энергии молекулы последние два члена (поправка на усредненную энергию отталкивания электронов и энергия отталкивания ядер) компенсируются. В этом же приближении электронная энергия атомов равна сумме орбитальных энергий в атомах или 2па. Отсюда энергия диссоциации молекулы или сумма энергий связей равна [c.111]

    Энергия диссоциации. По формуле (48.12) определяют энергию диссоциации молекулы, найдя коротковолновую границу полосатого [c.163]

    В настоящее время не существует неэмпирических расчетов поверхности потенциальной энергии молекулы N20. Поэтому в работе использовалась модельная ППЭ. Параметры ППЭ выбирались так, чтобы модель адекватно описывала конфигурацию и частоты собственных колебаний невозбужденной молекулы N20 и продуктов ее распада. Данные о длинах связей, частотах колебаний и энергиях диссоциации молекул ЫгО и N2 взяты из [93]. [c.114]

    В ряду Ш—Н.2 —Нб2 ПО мере заполнения связывающей ор-()итали энергия диссоциации молекул возрастает, с появлением же >лектрона на разрыхляющей орбитали, наоборот, уменьшается. [c.50]

    Вы ислим энергию химической связи Н—С1 ( на = —АЯн- i) в молекуле хлорида водорода по известной энтальпии образования НС1 (АЯ/, H I = —92,3 кДж/моль) и энергии диссоциации молекул На (А яисс 435,95 кДж/моль) и С12 ц (АЯдвд, = 242,6 кДж/моль) на атомы, кДж /моль [c.165]

    Молекулы брома и его аналогов двухатомны. Как видно из приведенных данных, с увеличением в ряду Вгг — межъядерного расстояния i/ээ энергия диссоциации молекул АЛдисс.э, уменьшается, что объясняется уменьшением степени перекрывания связующих электронных облаков. В этом ряду увеличивается поляризуемость молекул, а следовательно, усиливается способность к межмолекулярному взаимодействию. Поэтому в ряду Вгг — I-j — Atj возрастают температуры плавления и кипения. В обычных условиях бром — красно-коричневая жидкость, иод — черно-фиолетовые кристаллы с металлическим блеском, астат — твердое вещество металлического вида. [c.299]

    Для молекулы J2 месту слияния полос соответствует квант с энергией 2,4 эв (г = 2050 слс ). Энергия диссоциации молекулы иода, по термохимическим данным, равна 1,5 эв (36,09 ккал1моль). [c.62]

    Для систем с не очень большим числом электронов в расчетах с расширенным многоэкспоненциальным базисом АО ЕохФ составляет 99—99,9% Еэл- Однако радоваться этому обстоятельству приходится не всегда, ибо, несмотря на большую относительную точность расчета Еохф, энергия диссоциации молекулы (Ое) определяется в ограниченном методе Хартри — Фока с большой абсолютной ошибкой (вплоть до 200% от истинного значения), а иногда и с неверным знаком (как, например, для молекулы з). Это неудивительно, поскольку энергия диссоциации (энергия связи)—наименее удобная для квантовохимического расчета величина. Ведь она получается в виде малой разности двух больших величин — полной энергии молекулы и полной энергии исходных атомов (или фрагментов). [c.186]

    Согласно методу молекулярных 01рбиталей образование молекул Вег, Mg2, aj и других невозможно, так как в них имеет место равенство числа связывающих и разрыхляющих электронов. TeiM не менее молекулы Mg2 и Саг обнаружены, а существование молекул Вег и Згг ставится под сомнение. В табл. 7 приведены энергии диссоциации молекул. Нет убедительного объяснения этому явлению. Дайте ваше объяснение приведенным числам и характеру изменения энергии диссоциации, предполагая две различные энергии диссоциации Вег. [c.37]

    Энергия диссоциации молекул гидридов и галогенидов металлов йодгруппы лития 2 [c.161]

    За нуль отсчета энергии можно принять, как и для атома, энергию невзаимодействующих электронов и ядер. Разность между суммой энергий невзаимодействующих атомов эл.ат и эл.мол назывзют энергией химической связи или энергией диссоциации молекулы, отсчитанной от минимума потенциальной кривой, и обозначают (глубина потенциальной ямы )  [c.45]

    Потенциальная поверхность. Равновесная конфигурация. Для многоатомной молекулы эл.мол является функцией уже не одной, а нескольких пространственных координат Яц. Например, для описания расположения трех ядер линейной молекулы АВС нужны две независимые координаты — В) и — С), если угол АВС считать фиксированным (180°). Потенциальная энергия молекулы АВС при этом становится функцией двух указанных координат, г = f R , и эта функция изобразится поверхностью в трехмерном пространстве потенциальная поверхность). Устойчивому состоянию молекулы отвечает минимальное значение ее энергии г ) = эл.мол (АВС) и определенное относительное расположение ядер в пространстве, называемое равновесной нфигурацией молекулы с параметрами г/к— В) и /- (В—С). Глубина потенциальной ямы определяет энергию химической связи связанную с энергией диссоциации молекулы или энергией атомизации соотношением (13.4). Для более сложной молекулы, чем линейная АВС, равновесная конфигурация и энергия равновесного состояния определяются положением минимума на потенциальной поверхности в многомерном пространстве. Если потенциальная поверхность имеет два (или более) минимума, для молекулы возможны два изомера или более, отличающиеся параметрами равновесной конфигурации и энергией. Если минимума на потенциальной поверхности нет, данная система нестабильна, при любом расположении ядер она распадается на невзаимодействующие атомы. [c.46]

    Молекула О2 — б и р а д и к а л. Наличие двух неспаренных электронов в молекуле обусловливает ее парамагнитизм — факт, которому только теория молекулярных орбиталей смогла дать объяснение. До этого считали все электроны в молекуле О2 спаренными. В молекуле О2 избыток связывающих электронов составляет всего две пары, двойная связь должна быть менее ррочной, чем тройная в молекуле N2. Энергия диссоциации молекулы кислорода Од(Ог) =5,П6 эВ и межъядерное расстоянив-г (02) = 1,207 Ю м (1,207 А) отвечают представлениям о двойной связи. Эту двойную связь можно обозначить как о л . [c.80]

    Энергию диссоциации молекулы на нейтральные атомы Dg можмо вычислить исходя из термохимического цикла  [c.91]


Смотреть страницы где упоминается термин Энергия диссоциации молекул: [c.77]    [c.149]    [c.71]    [c.29]    [c.45]    [c.164]    [c.167]    [c.120]    [c.120]    [c.222]    [c.60]   
Краткий справочник физико-химических величин (1974) -- [ c.0 ]

Правила симметрии в химических реакциях (1979) -- [ c.30 , c.31 ]

Физическая химия Том 1 Издание 5 (1944) -- [ c.20 , c.208 ]

Физическая химия Том 2 (1936) -- [ c.88 , c.478 , c.480 ]

Краткий справочник химика Издание 6 (1963) -- [ c.309 ]

Краткий справочник физико-химических величин Издание 6 (1972) -- [ c.81 , c.153 ]

Краткий справочник физико-химических величин Издание 7 (1974) -- [ c.15 , c.81 , c.93 , c.172 ]

Курс физической химии Том 2 Издание 2 (1973) -- [ c.58 , c.61 ]

Краткий справочник химика Издание 7 (1964) -- [ c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия диссоциации

Энергия молекул



© 2024 chem21.info Реклама на сайте