Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация соединений

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Действительно, она растет не только с повышением температуры, но и при плавлении (и сублимации) твердого вещества, при кипении жидкости, словом, при переходе вещества из состояния с меньшей энергией в состояние с большей энергией. Сопровождаются ростом энтропии и процессы расширения (например, газа), и растворения кристаллов, и химическое взаимодействие, протекающее с увеличением объема (например, диссоциация соединения), когда вследствие роста числа частиц неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности, — охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема (например, полимеризация), — сопровождаются уменьшением энтропии. [c.35]


    Диссоциировать в водных растворах способны соединения с ионными и полярными химическими связями. Однако в случае ионных соединений сам процесс растворения представляет собой отрыв из кристаллической решетки и перевод в раствор готовых ионов, так что истинная диссоциация соединения в полном смысле слова здесь не идет. Вместе с тем принято говорить о диссоциации ионных соединений. [c.209]

    Диссоциация соединений типа Э-ОН может протекать по двум направлениям  [c.21]

    Важнейшей характеристикой химической связи является энергия, определяющая ее прочность. Мерой прочности связи может служить количество энергии, затрачиваемое на ее разрыв. Для двухатомных молекул энергия связи равна величине энергии диссоциации молекул на атомы. Так, энергия диссоциации О, а следовательно, и энергия связи Е в молекуле На составляет 435 кдж моль. В молекуле фтора Ра она равна 151 кдж моль, а в молекуле азота N2 940 кдж моль. Для многоатомных молекул типа АВ средняя энергия связи Еав равна 1/га части энергии диссоциации соединения на атомы  [c.56]

    Концентрация свободных атомов в невозбужденном состоянии не меняется существенно при появлении какой-то доли возбужденных атомов, и, казалось бы, температура пламени не должна оказывать на нее влияния, однако косвенно это влияние проявляется в том, что состояние равновесия процессов диссоциации соединений в пламени зависит от температуры. Поэтому все факторы, оказывающие влияние на кон- [c.380]

    В середине прошлого века М. Бертло на основании большого числа определений тепловых эффектов химических реакций выдвинул принцип, согласно которому химическое сродство определяется количеством тепла, выделяющегося при реакции. Из принципа Бертло следует, что самопроизвольно могут протекать только экзотермические реакции. Легко видеть, что этот принцип неправилен хотя бы потому, что существуют самопроизвольные процессы, протекающие с поглощением тепла, например растворение многих солей в воде. Казалось бы, принцип Бертло оправдывается для реакций образования многих соединений из элементов, которые происходят с выделением тепла и идут практически до конца. Однако в действительности это справедливо лишь при относительно низких температурах. При достаточно высоких температурах эти же реакции самопроизвольно протекают в обратном направлении, т. е. происходит диссоциация соединений, сопровождающаяся поглощением тепла. Мы уже видели, что полнота завершения реакций зависит от температуры и концентраций. По существу принцип Бертло находится в противоречии с самим фактом существования химического равновесия. Это обусловлено тем, что М. Бертло основывался лишь на величинах ДЯ, т. е. на представлениях первого закона термодинамики, который, как отмечалось, дает лишь балансы тепловых явлений. Поэтому величина изменения энтальпии при реакции ДЯ не может служить мерой химического сродства. Такой мерой является величина ДО, определяемая уравнением [c.53]


    Взаимодействие элементарных окислителей с различными соединениями. Различные элементарные окислители могут восстанавливаться при взаимодействии с соединениями, которые играют роль восстановителей как в сухом виде, так и в виде растворов, в том числе водных. Условием для протекания реакций между элементарными окислителями и сухими соединениями — восстановителями является меньшее значение энергии диссоциации соединения — восстановителя по сравнению с энергией образования продукта восстановления окислителя. Весь процесс взаимодействия складывается из ряда эндотермических и экзотермических стадий. Первая из них — диссоциация соединения — восстановителя, а вторая — образование продукта восстановления из элементарного окислителя и вещества, образовавшегося при диссоциации соединения — восстановителя. Окислительная активность элементарного вещества здесь также тем сильнее, чем больше энергия сродства к электрону его атома и чем меньше энергия диссоциации его молекулы. [c.48]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]

    Направление диссоциации соединения, содержащего группировку атомов Э—О— —Н, зависит от относительной прочности связей Э—О [c.88]

    Образование сольватных оболочек вокруг ионов в растворах существенно ослабляет взаимодействия между ионами в ЖИДКОСТИ. Количественной мерой этого ослабления является диэлектрическая постоянная растворителя. В некоторых растворителях она очень велика. Например, диэлектрическая постоянная воды равна 80, поэтому в воде могут существовать разделенные ионы, т. е. происходит электролитическая диссоциация соединений с ионной связью. [c.121]

    Напишите уравнения реакции растворения платины в царской водке. Напишите уравнения реакции ступенчатой электролитической диссоциации соединения Н2[Р(С1б] и комплексного иона. Как изменится концентрация ионов в растворе этого соединения, если в раствор ввести а) H I б) КОН  [c.350]

    Из изложенного следует, что диссоциация соединении типа ROH может происходить по двум направлениям  [c.172]

    Р А Б О Т А 2. ИЗУЧЕНИЕ ЗАВИСИМОСТИ ДАВЛЕНИЯ ДИССОЦИАЦИИ СОЕДИНЕНИЙ С ЛЕТУЧИМ КОМПОНЕНТОМ ОТ ТЕМПЕРАТУРЫ [c.24]

    При температурах выше эвтектической горизонтали равновесие при диссоциации соединения описывается уравнением (б), причем [c.26]

    Элементы топологии Р—Т—д -диаграмм. Полупроводниковые соединения часто содержат летучий компонент (или компоненты), что предопределяет разложение соединения при нагреве на конденсированный продукт (жидкий или твердый) и газообразный. Образовавшийся расплав представляет собой раствор, обогащенный металлическим компонентом. Однако термическую диссоциацию соединения можно предотвратить, создавая в закрытой реакционной системе противодавление летучего компонента. Величина такого противодавления определяется только на основе полной Р—Т—jt-диаграммы состояния. [c.36]

    СВЯЗИ Е В молекуле Нг составляют 435 кДж/моль. В молекуле фтора F 2 она равна 159 кДж/моль, а в молекуле азота N2 940кДж/моль. Для многоатомных молекул типа АВ средняя энергия связи Еав равна 1/и части энергии диссоциации соединения на атомы  [c.43]

    Взаимодействие металлов и металлоидоа с различными соединениями. Металлы и металлоиды подвергаются окислению прн взаимодействии с различными соединениями, которые могут играть роль окислителей как в сухом виде, так и в виде растворов, в том числе водных. Реакции между металлами или металлоидами с сухими галидами или халькидами осуществляются только при сильном нагревании, хотя и сопровождаются энергетическим эффектом. Условием для протекания таких реакций является меньшее значение энергии диссоциации соединения-окислителя по сравнению с энергией образования продукта окисления восстановителя. Весь процесс взаимодействия, например [c.119]


    Открытие явления электролитической диссоциации, естественно, привело к необходимости пересмотреть эти определения. Определения кислот и оснований, учитывающие электролитическую диссоциацию соединений в растворе, были даны С. Аррениусом. Кислота — это вещество, образующее при диссоциации в растворе ион водорода. Основание — это вещество, диссоциирующее в воде с отщеплением иона ОН". В соответствии с этим определением к числу кислот относятся следующие вещества НС1, Нг804, Н8047 НЫОз, а к числу оснований КаОН, Ва (ОН)г, Ва (0Н)+, КН40Н. [c.75]

    На границе раздела водных растворов и твердого адсорбента праетически всегда возникает двойной электрический слой, обусловленный диссоциацией соединений, входящих в состав адсорбента, диссоциацией адсорбированных веществ, избирательной адсорбцией из раствора ионов одного какого-либо вида и т.д. [c.23]

    Растворимые в кетонах соли щелочных и щелочноземельных металлов можно титровать раствором хлорида лития в кетонах, при этом в осадок выпадают нерастворимые в кетонах хлориды щелочных или соответственно щелочноземельных металлов. Особенно хорошие результаты дает использование осциллометрии для индикации точки эквивалентности. Однако ход осциллограммы нельзя объяснить на основе различия в подвижностях ионов, как в случае водных растворов. Из-за низкого значения диэлектрической проницаемости растворителя растворы солей диссоциированы неполностью, и поэтому ход осциллограммы в значительной степени определяется различием степени диссоциации соединений. При титровании солей натрия электропроводность раствора до точки эквивалентности может уменьшаться или возрастать в зависимости от того, является ли образующееся соединение более электропроводным. Рис. Д. 147. Кривые осциллометриче- чем соответствующая соль лития, ского титрования 0,206 мг-экв КЗЬРв или менее электропроводным. При раствором ЬЮ1 в различных раство- титровании одной и той же соли в рителях различных растворителях это влия- [c.350]

    Даже незначительная диссоциация соединения АтВп в корне изменяет положение дел. Качественный молекулярный состав слева от ординаты соединения перестает в принципе отличаться от состава справа от нее, и в итоге будем иметь одну жидкую фазу, концентрационная зависимость изобарно-изотермического потенциала которой должна описываться кривой типа показанной на рис. 45. При этом нет нужды обсуждать вопрос о возможности проведения общей касательной к кривым, представленным на рис. 59. Очевидно, нет необходимости специально обсуждать вопрос о правомерности перенесения указанных рассуждений на твердое состояние, поскольку принципиальной разницы между жидкими и твердыми растворами нет. [c.295]

    Если специфическая адсорбция ионов на поверхности электрода является обратимой, то форма спектров AR/Ro—X при этом обычно ие изменяете , а изменение кривых AR/Ro—Ео при = onst может быть связано с соответствующим изменением емкости. Поэтому сильное искажение спектров электроотражения может служить указанием на образование химических соединений. Такие данные были получены в водных растворах KI при больших анодных потенциалах серебряного и золотого электродов. При этом на кривых AR/Ro—I в области энергии квантов света h =h / k, соответствующей энергии диссоциации соединения Ме—1, наблюдался минимум. Аналогичные минимумы наблюдались в спектрах электроотражения р-полярпзованного света от поверхности свинцового и индиевого электродов при адсорбции на них молекул анилина. Они были связаны с частичным переходом л-электронов ароматического ядра в незаполненную зону проводимости металла при образовании адсорбционного комплекса с переносом заряда. [c.184]

    Процесс диссоциации количественно характеризуется степенью диссоциации. Степень диссоциации — это отношение числа распавшихся на ионы молекул к общему числу молекул растворенного вещества, обозначается буквой а. Например, если из каждых 100 молекул растворенного вещества 82 )аспадаются на ионы, то степень диссоциации соединения будет равна  [c.279]

    Взаимодействие металлов и металлоидов с различными соединениями. Металлы и металлоиды могут окисляться при взаимодействии с различными соединениями, которые играют роль окислителей как в сухом виде, так и в виде растворов, в том числе водных. Реакция между металлами или металлоидами и сухими галидами или хальки-дами происходит только при сильном нагревании, хотя и сопровождается экзотермическим эффектом. Условием для протекания таких реакций является меньшее значение энергии диссоциации соединения-окислителя по сравнению с энергией образования продукта окисления восстановителя. Весь процесс взаимодействия складывается из ряда эндотермических и экзотермических стадий. На первой стадии происходит диссоциация соединения — окислителя, а на второй — образование продукта окисления из металла или металлоида и эле-.ментарного окислителя, образовавшегося при диссоциации соединения — окислителя. Восстановительная активность элементарного вещества при этом тем сильнее, чем меньше величины энергии его ионизации и сублимации. [c.47]

    Аррениус предполагал, что диссоциация соединений является химической реакцией, ведущей к установлению равновесия между ионами и непродиссоциированными молекулами. Увеличение разведения ведет к возрастанию степени диссоциации а, которая достигает единицы при бесконечном разбавлении, т. е. тогда, когда наступает полная диссоциация. [c.70]

    В. 50-е годы XIX в. наметилось более тесное сближение между физикой и химией. Этому способствовали атомистические представления, в частности кинетическая теория газов, оказавшая в дальнейшем огромное влияние на развитие физической химни. В химии же после классических работ А. Сент-Клер Девиля по термической диссоциации соединений изучение процессов и способов их осуществления выдвинулось на первый план. Развитие этого направления исследований привело к созданию химической статики и проникновению в химию первого, а затем второго закона термодинамики. Рассмотрение равновесных состояний как определенного аспекта химического процесса было той основой, на которой началось сближение между физикой и химией, прогрессивно углубляющееся с годами. [c.300]


Библиография для Диссоциация соединений: [c.526]   
Смотреть страницы где упоминается термин Диссоциация соединений: [c.176]    [c.29]    [c.119]    [c.120]    [c.126]    [c.205]    [c.297]    [c.297]    [c.84]    [c.84]    [c.301]    [c.135]    [c.388]    [c.111]    [c.424]    [c.237]    [c.61]    [c.62]    [c.178]    [c.173]    [c.75]    [c.100]    [c.26]   
Смотреть главы в:

Атомно-абсорбционный спектральный анализ -> Диссоциация соединений


Технология тонких пленок Часть 1 (1977) -- [ c.96 , c.101 ]




ПОИСК







© 2025 chem21.info Реклама на сайте