Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неметаллические химически TOj кне материалы

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Неметаллические химически стойкие материалы находят широкое применение почти во всех областях народного хозяйства. Особое значение они приобрели в качестве защитных покрытий металла от воздействия агрессивных сред или как самостоятельный конструкционный материал в аппаратостроении химической и родственных с ней отраслей промышленности. [c.305]

    При выборе материалов для изготовления химической аппаратуры учитываются не только их стойкость к коррозии, но и прочность, устойчивость при высокой температуре, возможность обработки и сварки материала, его доступность и стоимость. Если черные металлы являются достаточно стойкими к коррозии в условиях работы данного аппарата или технологического узла, эти материалы следует использовать в первую очередь, так как они весьма прочны, доступны и достаточно дешевы. Часто применяют также легированные черные металлы (содержащие легирующие добавки) или специальные сплавы, обладающие повышенной коррозионной стойкостью. Однако специальные сплавы обычно дороги, и в условиях, слишком жестких для длительной службы черных металлов, обычно используют неметаллические химически стойкие материалы. [c.36]

    Ситалл — неметаллический неорганический стеклокристаллический материал, получаемый кристаллизацией затвердевшего стекла. Принято выделять технические ситаллы, сырьем для которых служат химические продукты высокой чистоты, однородности и стоимости шлакоситаллы (ведущий компонент сырья — отвальный холодный шлак) петроситаллы (ведущий компонент сырья — изверженная горная порода). [c.90]

    Материал и форму прокладки определяют условия работы соединения давление, температура и агрессивность среды. Основные требования к прокладкам эластичность, термостойкость.долговечность, химическая стойкость, недефицитность. В зависимости от материала прокладки делятся ка неметаллические, металлические и комбинированные. В табл.17 приведены пределы применения прокладок в зависимости от условий работы соединения. При выборе материала прокладки для конкретных аппаратов следует придерживаться рекомендаций, приведенных в табл.18. [c.97]

    Третья группа методов подразумевает использование для борьбы с коррозией защитных покрытий. Основное назначение защитного покрытия, с одной стороны, состоит в создании барьерного слоя, препятствующего прониканию агрессивной среды к поверхности материала с другой — в ограничении или предотвращении образования новой фазы (продуктов коррозии) на поверхности раздела материал — покрытие , т. е. защитные покрытия должны обладать высокой химической устойчивостью, слабой проницаемостью для жидкостей и газов, хорошей адгезией к металлу или неметаллическому материалу, высокой стабильностью структуры и относительно высокой механической прочностью и долговечностью. [c.126]


    Как и все графитовые материалы, антегмит отличается от других неметаллических химически стойких материалов повышенной теплопроводностью. По теплопроводности АТМ-1 занимает среднее положение между графитом и углем (коксом). Так называемые литые графиты практически не теплопроводны. Поскольку АТМ-1 имеет большую механическую прочность, чем пропитанные графиты, из АТМ-1 можно выполнять теплопередающие стенки аппаратов меньшей толщины и за счет этого компенсировать меньший показатель теплопроводности этого материала. [c.19]

    В нефтезаводском оборудовании применяют также ряд неметаллических материалов стеклопластики, фторопласты, винипласт, резину, химически стойкий текстолит, фаолит, графитовую композицию АТМ-1, бетонные футеровки и др. Винипласт используют в качестве защитного и конструкционного материала до температуры 60° С. Он стоек почти во всех кислотах [41, хорошо сваривается горячим воздухом. Из винипласта изготовляют листы, трубы, арматуру. Стеклопластики используют для лопастей вентиляторов и диффузоров аппаратов воздушного охлаждения и градирен. Из фторопласта-4 изготовляют проходные и подвесные изоляторы для электродегидраторов и электроразделителей. [c.26]

    Исследована смачиваемость в системах Си — Мо — 5102 (1150° С), Си — Мо — А)2 Оз (1150 С), Си — Мо графит (1150 С), Ай — Мо — А1А (1000 С). 5п — Мо — ЗЮз (900—1150 С), 5п — Мо графит (900 С), Зп — V — 310. (900 С), Зп — V графит (900 С), РЬ — Ре—3102 (700° С), РЬ—Ре графит (700° С). Изучено влияние структуры и физико-химических свойств тонких металлических пленок, нанесенных на неметаллические материалы, на смачиваемость расплавами металлов. Для каждой из изученных систем установлены критические толщины смачивания металлической пленки (наименьшая толщина пленки, при которой наступает смачивание такое же, как и компактного материала пленки). Полученные величины критических толщин смачивания объяснены в зависимости от структуры пленки, ее взаимодействия с подложкой, температуры опыта и ряда др. факторов. Табл. 2, рис. 7, библ. 1. [c.222]

    В химической технологии применяются теплообменники, изготовленные из самых различных металлов (углеродистых и легированных сталей, меди, титана, тантала и др.), а также из неметаллических материалов, например графита, тефлона и др. Выбор материала диктуется в основном его коррозионной стойкостью и теплопроводностью, причем конструкция теплообменного аппарата существенно зависит от выбранного материала. [c.24]

    Иллюстрируем сказанное несколькими примерами в печах для осуществления сушки материалов ограждение не принимает никакого участия в технологическом процессе в печах для нагрева металла или неметаллических материалов попутно образующиеся шлаковые образования могут оказывать нежелательное химическое воздействие на ограждение в высокотемпературных плавильных печах— мартеновских, конверторных и электрических — влияние мате-1 риала ограждения (футеровки) является решающим с точки зрения состава получающегося шлака и протекания технологического процесса. В вакуумных печах практически отсутствует контакт материалов с ограждением и лишь только при охлаждении продукта в кристаллизаторе такой контакт неизбежен. При особенно высоких температурах агрессивность некоторых материалов процесса столь велика, что приходится применять ограждение (футеровку) из того же материала, что и сам расплав. Такая футеровка получила название гарниссажной. [c.242]

    Не менее важно то, что вы имеете теоретический фундамент для понимания и запоминания многих химических фактов, о которых вы постепенно узнаёте. В данной главе будет рассмотрена химия нескольких неметаллических элементов и их соединений. Изучая эти вещества, вы встретитесь с некоторыми фактами, уже обсуждавшимися ранее. Мы будем также часто обращаться к законам, изложенным в предыдущих главах, чтобы установить и осмыслить закономерности, связывающие физические и химические свойства таких веществ. В ходе изучения данной главы вы будете часто встречаться со ссылками на материал, изложенный в предыдущих главах. Если вы не вполне уверены, что хорошо помните этот материал, неплохо вернуться назад и повторить его. Изучение данной главы должно укрепить и углубить ваше понимание усвоенных ранее законов одновременно вы узнаете много нового из так называемой описательной химии неметаллических элементов. [c.281]

    Открытие периодического закона. К середине XIX в. был накоплен достаточно богатый экспериментальный материал, характеризующий свойства химических элементов и их соединений. Было установлено, что способность проявлять основные свойства принадлежит в первую очередь оксидам элементов, называемых щелочными металлами, и — в несколько меньшей степени — оксидам элементов, называемых щелочноземельными металлами способность проявлять кислотообразующие свойства принадлежит в первую очередь оксидам галогенов и других неметаллических элементов. Было известно также о существовании элементов с промежуточными свойствами, у высших оксидов которых проявляются кислотообразующие свойства, а у низших оксидов, хотя и не очень явно, — основные. Эти характеристики химических элементов оценивались тогда только качественно, так как в то время еще не были известны количественные [c.21]

    Далее более глубоко рассматривается материал о строении вещества, об основных металлических и неметаллических элементах периодической системы химических элементов. [c.4]


    Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды. [c.13]

    Белый чугун по сравнению с серым обладает более высокой твердостью и износостойкостью, так как весь имеющийся в нем углерод находится в виде химических соединений —карбидов с металлами (Ре, Сг, и др.), а мягкая неметаллическая составляющая (графит), отсутствует. В связи с этим белый чугун применяют как конструкционный материал для работы в условиях абразивного изна шивания. [c.50]

    Собственно справочный материал оригинален и не дублирует имеющиеся в СССР справочники. Бесспорное достоинство книги в том, что авторы собрали и обобщили данные по химическому составу металлов и сплавов, широко применяемых в технике. Несомненный интерес представляют Сравнительные таблицы составов различных металлов и сплавов согласно стандартам стран-изготовителей , которые позволяют установить состав сплавов, изготовленных по стандартам разных стран. В книге дана также уникальная по объему сводка торговых наименований металлических и неметаллических материалов и краткое описание их состава. В условиях расширяющейся международной торговли эти материалы представляют большой самостоятельный интерес, так как на их основе можно установить соответствие между торговыми марками материалов, выпускаемых в разных странах. Это поможет советским специалистам определить условия эксплуатации импортного оборудования. [c.6]

    За меру химической стойкости неметаллических материалов, применяемых в качестве герметиков, плакирующих защитных покрытий, часто принимают величину их набухания в рабочей среде. При использовании тех же материалов в качестве конструкционных или для футеровки крупногабаритного оборудования таких данных недостаточно. В этом случае за критерий работоспособности материала необходимо принимать данные о его физических и, в частности, механических свойствах в рабочей среде. [c.82]

    К К.. м. относят собственно К. м., а также антикоррозионные материалы. В зависимости от природы материала К, м. подразделяют на металлич. и неметаллические. Последние используют в качестве конструкционных, футеровочных, обкладочных и прослоечных материалов, лакокрасочных покрытий и композиций (см. Химически стойкие материалы). [c.478]

    Материал, оставшийся на сите 39, доставляется на устройство 41 по линии 40. Устройство 41 представляет собой два валка для измельчения керамики, мелких камней, и других твердых предметов неметаллического характера, которые затем разделяют просеиванием в 43. Отделенные частицы металла могут продаваться как смесь, или обрабатываться химическими методами и выделяться в виде индивидуальных металлов. [c.172]

    Самым привычным видом разрушения неорганических соединений является эрозия — разрушение конструкций под действием дождей, ветра, изменений температуры. Однако кроме эрозии, т. е. разрушения, связанного с механическими воздействиями на материал, выделяют еще одну причину разрушения неметаллических конструкций, а именно разрушение под действием различных химических и физико-химических факторов. Чаще всего при разрушении неметаллических материалов наблюдается совместное воздействие эрозионной и коррозионной сред. Поэтому, говоря о коррозии строительных материалов, обычно имеют в виду одновременное протекание обоих процессов. [c.102]

    Асбортимент лакокрасочных материалов, который включает грунты, шпатлевки, лаки, краски и эмали, чрезвычайно велик. Неметаллические полимерные материа лы этой группы предназначены для защиты от атмосферных воздействий (окружающей среды), химических сред, воды, бензина, масла, повышенных температур, а также для электроизоляции [104, с. 1 —141 105]. [c.225]

    Наряду с неметаллическими трубопроводами в промышленности применяются трубы из углеродистой стали, защищенные изнутри слоем неметаллического химически стойкого материала, нанример эмалированные трубы. Практическое применение в химической промышленности получили гуммированные трубы и в некоторых случаях трубы, покрытые с внутренней стороны химически стойкими лакалш и эмалями, например бакелитовым, перхл0рвини.т10вым, битумно-масляными лаками и др. Такие защитные покрытия устойчивы в кислых растворах при температурах не выше 65°. [c.109]

    Неметаллические химически стойкие материалы находят широкое применение в химической промышленности в качестве основного конструкционного или футеровоч-иого материала. Все применяющиеся в технике неметаллические материалы делят па две группы. В первую группу объединены неметаллические химически стойкие материалы неорганического происхождения  [c.221]

    Об.часть применения неметаллических материалов в химическом машиностроении расширяется все больше и больше. Так как, помимо требований высокой химической стойкости, теп 10-нроиодиостн и механической прочности, неметаллические мате-риа.)ы должны удовлетворять и многим другим требованиям (не-лроинцаемость для газов и жидкостей, хорошая сцепляемость футеровочных материалов и покрытий с различными материалами, хорошая обрабатываемость, небольшой вес и т.д.), нередко приходится сочетать два или даже три неметаллических материала, чтобы удовлетворить всем предъявляемым т])ебованиям и пол, чнть необходимый эффект. [c.353]

    В связи о многообразием неметаллических материалов и различным поведением их в коррозионных средах до настоящего времени не разработаны единые, унифицированные методы испытаний неметаллов на стойкость н кЬрр03И01Ш0Чу разрушению. Для этих цепей ис-г/ользуется целый рдц методов, применение которнх зависит от природы материала. При этом 01сутствуют четкие рекомендации по оценке химической стойкости, позволяющие прогнозировать долговечность материалов в условиях контакта с рабочими средаши  [c.35]

    Открытие периодического закона. К середине XIX в. был накоплен достаточно богатый экспериментальный материал о свойствах химических элементов и их соединений. Так, было установлено, что оксиды щелочных и щелочноземельных металлов проявляют основные свойства, а оксиды галогенов и других неметаллических элементов— кислотообразующие свойства. Было известно также о существовании элем М1тов с промежуточными свойствами, высшие оксиды которых являются кислотообразующими, а низише — основными. Эти свойства химических элементов могли быть оценены тогда только качественно. Наряду с этим такие свойства химических элементов, как, например, атомные массы, валентность и некоторые другие, уже определяли количественно и весьма точно. [c.34]

    Распространена ошибочная точка зрения на роль неметаллического покрытия. Считают, что покрытие защищает металл от коррозии, пока оно не повреждено и держится на мета1ше. Это не так, коррозия металла начинается задолго до того, как покрытие разр -шилось. С другой стороны, даже с появлением единичных дефектов 3 покрытии его защитные функции еще сохраняются. На прак-тике лимитирующим фактором непригодности покрытия в большинстве случаев считают отслоение его, от подложки и распространение дефекта. При оценке защитных свойств покрытий часто определяют физико-химическую стойкость материала покрытия, а состав металла и его реакции с компонентами [c.46]

    К неметаллическим покрытиям, применяемым для повышения долговечности нефтегазопромыслового и добьтающего оборудования, предъявляется комплекс общих требований, таких, как высокая химическая стойкость., эластичность, термостойкость, прочность сцепления с основой, отсутствие отрицательного влияния покрытия-на материал основы. В зависимости от условий эксплуатации покрытие выполняет определенные специфические функции защищает от механического и гидроабразивного износа, обеспечивает термоизоляцию системы, препятствует отложению солей и парафина, создает защиту в условиях различных [c.127]

    Для получения покрытий, обеспечивающих коррозионную защиту, наибольшее применение получил органосиликатный материал ВН-30, представляющий собой суспензию измельченных силикатов и оксидов металлов в толуольном растворе полиорга-носилоксанов. Он предназначается для окраски металлических и неметаллических поверхностей (опор контактной сети железных дорог, линий электропередач, металлоконструкций, электрофильтров и газоводов химических предприятий) с целью защиты их от коррозии. [c.83]

    Обозначения при оценке химической стойкости неметаллических материалов С —стойки (набухание материала не превышает 5%. а изменение прочности на разрыв и относительного удлинения —не более 10%) ОС —относительно стойки (набухание 5—10% и изменение механических свойств 10-20%) Н —нестойки (набухание и изменение мечанических свойств больше, чем а предыдущем случае). [c.130]

    Испытания на коррозионную усталость, как известно, характеризуются неизбежным разбросом результатов эксперимента. Разброс вызывается погрешностью машин, условиями проведения опыта, точностью и технологией изготовления образцов и др., а также неоднородностью структуры и химического состава испытываемого материала. (наличие неметаллических включений, микротрещин, химическая неоднородность, анизЬтррпность механических свойств и пр.). Если влияние первой группы факторов можно значительно уменьшить усовершенствованием оборудования и методики испытаний, то рассеяние экспериментальных данных, вызванное неоднородностью материала, связано со статистической природой коррозионно-усталостного разрушения и его нельзя полностью устранить. Его необходимо учитывать при испытаниях достаточно большого числа образцов, а результаты опыта желательно обрабатывать с помощью методов математической статистики. [c.32]

    Как указывалось, в насадочных абсорберах, вследствие распределения в них жидкости тонким слоем по поверхности насадки, создается развитая поверхность контакта между жидкостью и газом. Развитой поверхностью фазового контакта отличаются и бар-ботирующие абсорберы. Однако чаще применяют насадочные абсорберы вследствие простотгл их устройства, дешевизны, удобства обслуживания и ремонта кроме того, насадочные абсор-, беры легко могут быть изготовлены из любого химически стойкого материала (андезит, керамика и др.), в то время как тарельчатые абсорберы трудно изготовить из неметаллических материалов. Следует также указать на более высокое гидравлическое сопротивление тарельчатых абсорберов по сравнению с насадочными. [c.523]

    Фторопласт — наиболее ценный конструкционный неметаллический материал. По антикоррозионным свойствам он превосходит все известные матералы, включая платину, стоек ко всем минеральным и органическим кислотам, совершенно нерастворим ни в одном из известных растворителей, но нестоек к воздействию расплавленных щелочных металлов или их растворов в аммиаке, элементарного фтора и трехфтористого хлора. Фторопласт не сваривается и склеивается с трудом. Применяется для изготовления трубопроводов химической промышленности, деталей аппаратов, работающих со средами средней и высокой агрессивности. Суспензия фторопласта-3 используется для антикоррозионных покрытий стальной аппаратуры. [c.15]

    В металлической садке тепло генерируется индукционными токами независимо от химического состава неметаллического материала в зазоре между индуктором и садкой. При нагреве небольших стержней (до 62 мм в диаметре) обычно используют естественные воздушные промежутки, поскольку время нагрева так мало, что в них по сравнению с потерями в водоох-лаждаемом индукторе теряется лишь незначительное количество тепла. Время нагрева более крупных стержней (диам. 75 мм и выше) достаточно велико, поэтому применяют тепловую изо- [c.166]

    Г Вернемся к рассмотрению материалов на основе классификации их па составу. Группа неметаллических неорганических ма--териалов также весьма обширна, как и группа органических материалов. Она включает разнообразные керамические материалы, как кислородсодержащие (фарфор, стекло, керамика на основе чистых тугоплавких оксидов алюминия, тория, магния, иттрия, бериллия и др., керамика сложного состава со специальными свойствами), так и бескислородные (нитриды, бориды и силициды, прозрачная керамика на основе халькогенидов цинка и кадмия, фторидов РЗЭ). Среди них важное место занимают силикатные цементы и бетоны, графитовые материалы (графопласты и графолиты, пироуглерод), а также солеобразные материалы на основе фосфатов и галогенидов. Неорганические материалы можно также разделить на две группы — природные и искусственные. Первые используют для изготовления крупногабаритных сооружений в виде самостоятельного конструкционного материала или в качестве футеровки металлических корпусов различных аппаратов. Горные породы — незаменимый конструкционный материал, в частности для химического производства (башни йодно-бромного производства, поглощения газообразного хлористого водорода и т. д.), а также в качестве наполнителей в производстве вяжущих силикатов — кислотоупорных цементов и бетона. Природные материалы трудно обрабатывать механически, что приводит к громоздкости выполненных из них сооружений. [c.145]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Подготовка к анализу проб порошкообразных материалов. При отборе проб от неметаллических материалов, таких как руды, шлаки, шламы, соли, различные минералы и другие природные образования, руководствуются теми же инструкциями, что и при отборе проб от этих веществ для химических методов анализа. Затем пробу следует измельчить так, чтобы все компоненты в ней бьихи распределены равномерно. Обычно размеры частиц на конечном этапе измельчения (истирания) составляют 0,07 мм (после просева на сите 150-200 меш). Главное условие при измельчении — не внести загрязнений от других проб и от материала ис-тирателей. В частности, в пробах горных пород и минералов, измельченных стальными дисковыми истирате-лями, бессмысленно определять металлы — основные легирующие компоненты этих сталей. [c.418]


Смотреть страницы где упоминается термин Неметаллические химически TOj кне материалы: [c.26]    [c.6]    [c.91]    [c.5]    [c.73]    [c.154]    [c.145]    [c.154]   
Справочник азотчика (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бергман К. Г. Результаты испытания новых химических стойких н термостойких неметаллических материалов в производстве основной химической промышленности

Володин и Неметаллические кислотоупорные материалы в химической промышленности

ЗАЩИТА ХИМИЧЕСКИХ АППАРАТОВ НЕМЕТАЛЛИЧЕСКИМИ МАТЕРИАЛАМИ

Защита оборудования неметаллическими химически стойкими материалами

ИЗГОТОВЛЕНИЕ ХИМИЧЕСКОЙ АППАРАТУРЫ ИЗ КОНСТРУКЦИОННЫХ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Классификация и характеристика неметаллических химически стойких материалов

Конструкционные материалы неметаллические химически стойкие

Материалы неметаллические

Методы испытаний неметаллических материалов на химическую стойкость и защитные свойства

Методы исследований и оценки химической стойкости неметаллических материалов

Неметаллические материалы, преимущественно применяемые в химическом аппаратостроеФизико-химические и механические свойства неметаллических материалов

Неметаллические химически TOj

Неметаллические химически стойкие материалы

Неметаллические химически стойкие материалы Основные понятия Применение неметаллических химически стойких материалов

Неметаллические химически стойкие материалы Природные кислотоупоры

Неметаллические химически черных вяжущих материал

Определение химической стойкости неметаллических материалов

Основные данные о неметаллических химически стойких материалах

Физико-химическое воздействие воды на неметаллические материалы

ХИМИЧЕСКАЯ СТОЙКОСТЬ И ЗАЩИТНЫЕ СВОЙСТВА НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Химическая стойкость неметаллических материалов

Химическая стойкость неметаллических материалов (таблицы)

Химическая стойкость неметаллических материалов в теплоносителе на основе

Химическая стойкость неметаллических неорганических материалов

Химические насосы из неметаллических материалов

Химическое никелирование неметаллических материалов

Химическое никелирование неметаллических материалов (пластмасс и неорганических диэлектриков)



© 2025 chem21.info Реклама на сайте