Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конструкционные материалы неметаллические

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими сво11ствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свипца и хромоннкелевых сталей, в 3—5 раз. По этой причине примепеиие графита особенно эффективно для изготовления из пего тенлообмепной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико- [c.449]

    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]


    Конструкцию аппарата или трубопровода из металла с полимерным покрытием или из неметаллического конструкционного материала следует рассматривать как систему, состоящую из нескольких элементов, взаимодействующих в процессе эксплуатации. Работоспособность материалов связана с выполнением заданных нм функций, а их безотказность — со временем эксплуатации. Вследствие раз- [c.41]

    На стадии хлорирования доступные металлы не удовлетворяют требованиям эксплуатации из-за повышенной коррозии. На этой стадии в качестве конструкционного материала используются неметаллические кислотоупоры, в частности, фторопласт-4 [2]. [c.29]

    В нефтезаводском оборудовании применяют также ряд неметаллических материалов стеклопластики, фторопласты, винипласт, резину, химически стойкий текстолит, фаолит, графитовую композицию АТМ-1, бетонные футеровки и др. Винипласт используют в качестве защитного и конструкционного материала до температуры 60° С. Он стоек почти во всех кислотах [41, хорошо сваривается горячим воздухом. Из винипласта изготовляют листы, трубы, арматуру. Стеклопластики используют для лопастей вентиляторов и диффузоров аппаратов воздушного охлаждения и градирен. Из фторопласта-4 изготовляют проходные и подвесные изоляторы для электродегидраторов и электроразделителей. [c.26]

    Белый чугун по сравнению с серым обладает более высокой твердостью и износостойкостью, так как весь имеющийся в нем углерод находится в виде химических соединений —карбидов с металлами (Ре, Сг, и др.), а мягкая неметаллическая составляющая (графит), отсутствует. В связи с этим белый чугун применяют как конструкционный материал для работы в условиях абразивного изна шивания. [c.50]

    Общая характеристика антикоррозийных свойств неметаллических конструкционных материа.чов [c.90]

    Неметаллические химически стойкие материалы находят широкое применение почти во всех областях народного хозяйства. Особое значение они приобрели в качестве защитных покрытий металла от воздействия агрессивных сред или как самостоятельный конструкционный материал в аппаратостроении химической и родственных с ней отраслей промышленности. [c.305]

    Для агрессивных сред, в ряде случаев, представляется целесообразным и экономически оправданным, а иногда и единственно возможным применение внутри аппарата защитного слоя, наносимого на основной конструкционный материал из особо химически стойких металлических или неметаллических материалов. [c.401]

    По направлению потока дымовых газов к раструбу их температура и давление уменьшаются, а скорость увеличивается. В результате действия дополнительных факторов, связанных с высокой турбу-лизацией газового потока, звуковыми и механическими колебаниями (вибрацией) и ударными волнами, возникают напряжения, которые могут вызывать неравномерную асимметричную абляцию. Материалы для раструба, который имеет большой размер, должны обладать малым весом и должны подвергаться абляции равномерно с минимальной скоростью для обеспечения оптимальной эффективности работы соплового блока и критического сечения. Конструкционные материалы обычно изготовляют из армированных пластмасс с ориентированными волокнами из углерода или кремнезема. В некоторых случаях применяется формование с беспорядочной укладкой кремнеземистого или кварцевого волокна. Наружные конструкционные элементы ракеты подвергаются воздействию механических и термических напряжений, которые вызываются давлением газов, вибрацией, ускорениями, усилиями, возникающими при корректировке курса, и различием термического расширения разных конструкционных материалов. Чтобы противостоять воздействию этих факторов, конструкционный материал должен обладать высокой прочностью, соответствующим модулем упругости и сопротивлением короблению. Жаростойкая сталь, титан, алюминий или стеклопластики с высоким. модулем, полученные намоткой, являются наиболее подходящими для изготовления нару кных деталей соплового блока. Применение неметаллических абляционных материалов в реактивных двигателях, работающих на жидком топливе, оказалось также очень эффективным, но относительно мало распространенным. Часто абляционные материалы здесь вообще не нужны, так как само топливо может служить в качестве охладителя. Кроме того, продолжительность горения относительно велика и часто проводят проверочные испытания двигателей в статических условиях работы. [c.451]

    Механизм действия неметаллических защитных покрытий состоит, главным образом, в отделении поверхности металла или какого-то другого конструкционного материала от коррозионной среды. Лишь некоторые виды лакокрасочных покрытий (содержащие цинковую или алюминиевую пыль, пассивирующие вещества, например окислы свинца, хромат цинка) предохраняют металлические поверхности от коррозии благодаря протекторному или пассивирующему действию. [c.55]

    Разработан ряд насосов из неметаллических материалов — фарфора, пластмасс. В пластмассовых насосах в качестве конструкционного материала применяют термореактивный материал — фенолит марки РСТ, полиэтилен, а в последние годы — полипропилен. Гуммированные и фаолитовые насосы применяются для транспортировки кремнефтористоводородной кислоты, в которой насосы из нержавеющих и кислотостойких сталей и сплавов, как показал опыт эксплуатации, быстро выходят из строя по причине коррозии. Фаолитовые насосы подвержены заметному абразивному износу. [c.243]


    Неметаллические материалы применяются в производстве уксусной кислоты в ограниченных размерах. Винипласт использует ся как отличный конструкционный материал для изготовления вентиляционных воздуховодов и вентиляторов в производстве уксусной кислоты. Листовой полиизобутилен марки ПСГ с успехом может быть использован в комбинированных покрытиях для защиты полов и фундаментов, а также сточных лотков и т. п. [17, 18]. [c.59]

    В нефтезаводском оборудовании используют также ряд неметаллических материалов винипласт, резину, химически стойкий текстолит, фаолит, графитовую композицию АТМ-1,бетонные футеровки и др. Винипласт используют в качестве защитного и конструкционного материала до температуры 60°. Он стоек почти во всех кислотах [10], хорошо сваривается горячим воздухом. Из винипласта изготовляют листы, трубы, арматуру. [c.16]

    Полностью приостановить разложение поглотительного раствора в производственных условиях не представляется возможным. Значительного повышения стабильности поглотительного раствора и уменьшения коррозии оборудования из углеродистой стали можно добиться лишь при устранении указанных выше причин, вызывающих разложение хемосорбента. Для этого необходимо изолировать поглотительный раствор от углеродистой стали (нанести на поверхность металла стойкое неметаллическое покрытие или заменить конструкционный материал более стойким в данных средах), ликвидировать перегревы раствора, устранить места застоя (изменением конструкции), поддерживать кондиционный состав поглотительного раствора, уменьшить содержание углекислого газа в системе. [c.63]

    Конструкции тарельчатых колонн весьма разнообразны. Это объясняется чрезвычайно большим ассортиментом перерабатываемого сырья, широким диапазоном производительности и различным гидравлическим режимом колонн. В качестве конструкционного материала для изготовления колонных аппаратов наиболее широко применяют углеродистую и кислотостойкую сталь. В некоторых случаях по условиям коррозии и очистки тарелок целесообразно использовать чугун. Колонны из цветных металлов выполняются реже. В настоящее время осваиваются тарельчатые колонны из неметаллических материалов — керамики, графита, фторопласта и т. д. [c.194]

    Фторопластовый трубопровод, собираемый на фланцевых соединениях, в отличие от других распространенных неметаллических трубопроводов характерен своим высоким температурным пределом применения (250 °С). Однако герметичность фланцевых соединений этого трубопровода нарушается еще и потому, что фторопласт-4, из которого изготавливаются трубы, как конструкционный материал отличается существенным недостатком — остаточной деформацией. [c.80]

    Графит является единственный неметаллическим материалом с высокой теплопроводностью и химической стойкостью в большинстве сред. Он давно привлекает к себе внимание как конструкционный материал 8 химическом машиностроении для различных химических аппаратов и в первую очередь тех, в которых происходят процессы теплопередачи. [c.117]

    Оборудование гальванических цехов изготовляется из черных и цветных металлов, а также из неметаллических материалов неорганического и органического происхождения. Неметаллические материалы применяются в качестве конструкционного материала или для футеровки по стали. [c.8]

    Выбор конструкционного материала ТОА определяется допустимыми потерями прочности материала при рабочих температурах. Для химически активных сред используются неметаллические теплопередающие поверхности, например, графитовые ТОА [123] с высокой теплопроводностью графита, но механически менее прочные. Используются также эмалированные поверхности и материалы из пластических масс и из керамики. [c.248]

    Единственным неметаллическим материалом, сочетающим высокую устойчивость к действию большинства кислот и солей с хорошей теплопроводностью, является искусственный пропитанный графит, который нашел уже широкое применение как конструкционный материал для теплообменной химической аппаратуры. Незначительно уступает ему по свойствам другой конструкционный материал АТМ-1, представляющий собой высоконаполненную пластмассу на основе фенолформальдегидной смолы. [c.142]

    Важнейшим требованием, предъявляемым к вакуумным системам, является герметичность. Незначительные количества газов, способные проникнуть внутрь вакуумной системы, могут резко изменить степень разреженности и часто сделать систему неработоспособной. Но не только герметичность и отсутствие натекания извне определяют качество вакуумной системы. Любой конструкционный материал, будь то металл, стекло, пластмасса или керамика, при определенных условиях может служить источником газа. Газ может быть растворен в металле нри его изготовлении или содержаться в неметаллических включениях, от которых несвободно абсолютное большинство сортов стали. Сорбированный газ тончайшей пленкой покрывает поверхность любой детали вакуумной системы. [c.401]

    Ниже приводятся данные по стойкости ряда конструкционных металлических и неметаллических материалов, наиболее важных для создания циркуляционных контуров и других систем, непосредственно соприкасающихся с теплоносителем при повышенных температурах. При изложении этого материала мы использовали работу [21, дополнив ее результатами работ последних лет. [c.273]

    За меру химической стойкости неметаллических материалов, применяемых в качестве герметиков, плакирующих защитных покрытий, часто принимают величину их набухания в рабочей среде. При использовании тех же материалов в качестве конструкционных или для футеровки крупногабаритного оборудования таких данных недостаточно. В этом случае за критерий работоспособности материала необходимо принимать данные о его физических и, в частности, механических свойствах в рабочей среде. [c.82]

    К К.. м. относят собственно К. м., а также антикоррозионные материалы. В зависимости от природы материала К, м. подразделяют на металлич. и неметаллические. Последние используют в качестве конструкционных, футеровочных, обкладочных и прослоечных материалов, лакокрасочных покрытий и композиций (см. Химически стойкие материалы). [c.478]

    В подавляющем большинстве случаев довольствуются стойкими в данной среде материалами, проницаемость которых не превышает 0.1 мм/год. В особо ответственных случаях, когда по условиям технологического процесса производства того или иного химического продукта требуется материал наивысшей коррозионной стойкости, аппаратуру изготовляют из металлических или неметаллических конструкционных материалов, проницаемость которых не превышает 0,01—0,001 мм/год или почти равна нулю. [c.100]

    Это объясняется чрезвычайнЪ большим ассортиментом перерабатываемого сырья, широким диапазоном производительности и различным гидравлическим режимом колонн [1, 30]. В качестве конструкционного материала для изготовления колонных аппаратов наиболее широко применяют углеродистую и кислотостойкую сталь, реже цветные металлы и чугун. В настоящее время осваиваются тарельчатые колонны из неметаллических материалов—керамики, графита и фторопласта. [c.137]

    Boe основнне неметаллические конструкционные материали, используемые в технике, кожно класси пиропать следующим образом (рис,24). [c.54]

    Для изготовления нефтезаводского оборудования применяют углеродистые и легированные стали, серый, модифицированный и легированный чугуны, цветные металлы и сплавы, неггеталли-ческне материалы неорганического происхождения и пластмассы, кирпич строительный и огнеупорный, строительный и огнеупорный бетон и железобетон, дерево и другие материалы. Углеродистые и легированные стали, а также цветные металлы и сплавы применяют в виде листового и сортового проката, поковок, труб и отливок чугун в виде отливок п труб. Неметаллические материалы и пластмассы могут применяться как конструкционный материал для изготовления отдельных аппаратов и арматуры и как обкладочный и изоляционный материал для предохранения анпаратуры от коррозии. Строительный и огнеупорный кирпич используют для монтажа печей, строительный бетон и железобетон для изготовления емкостей, бункеров п т. д. [c.17]

    Г Вернемся к рассмотрению материалов на основе классификации их па составу. Группа неметаллических неорганических ма--териалов также весьма обширна, как и группа органических материалов. Она включает разнообразные керамические материалы, как кислородсодержащие (фарфор, стекло, керамика на основе чистых тугоплавких оксидов алюминия, тория, магния, иттрия, бериллия и др., керамика сложного состава со специальными свойствами), так и бескислородные (нитриды, бориды и силициды, прозрачная керамика на основе халькогенидов цинка и кадмия, фторидов РЗЭ). Среди них важное место занимают силикатные цементы и бетоны, графитовые материалы (графопласты и графолиты, пироуглерод), а также солеобразные материалы на основе фосфатов и галогенидов. Неорганические материалы можно также разделить на две группы — природные и искусственные. Первые используют для изготовления крупногабаритных сооружений в виде самостоятельного конструкционного материала или в качестве футеровки металлических корпусов различных аппаратов. Горные породы — незаменимый конструкционный материал, в частности для химического производства (башни йодно-бромного производства, поглощения газообразного хлористого водорода и т. д.), а также в качестве наполнителей в производстве вяжущих силикатов — кислотоупорных цементов и бетона. Природные материалы трудно обрабатывать механически, что приводит к громоздкости выполненных из них сооружений. [c.145]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    Однако наиболее надежно применение в качестве конструкционного материала металлов, стойких в указанных средах. В табл. 20 и 21 приводятся данные по химической стойкостл металлов и неметаллических материалов в процессе разделения углеводородов водно-аммиачным раствором ацетата закиси меди. [c.63]

    Основн ые пути борьбы с точечной коррозией — это изготовление хромо-никелевых сталей более чистых в отношении посторонних неметаллических включений, применение изделий с более гладкой тонко шлифованной либо полированной поверхностью и, р.аконец, использование в качестве конструкционного материала сталей, дополнительно легированных молибденом. [c.514]

    Точение, фрезерование, сверление, шлифование и другие процессы обработки резанием сталей, чугунов, цветных металлов и сплавов, неметаллических конструкционных материалов, штамповка и прокатка металлов характеризуются большими статическими и динамическими нахруз-ками, высокими температурами, воздействием обрабатываемого материала на режущий инструмент, штамповочное и прокатное оборудование. [c.397]

    Фторопласт - наиболее ценный конструкционный неметаллический материал. По антикоррозионным свойствам он превосходит все известные материалы, включая платину, стоек ко всем минеральным и органическим кислотам, совершенно не растворим ни в одном из известных растворителей, но нестоек к воздействию расплавленных щелочных металлов или их растворов в аммиаке, элементарного фтора и трёхфтористого хлора. Фторопласт не сваривается и с трудом склеивается. Применяется для изготовления трубопроводов, деталей аппаратов, работающих со средами средней и высокой агрессивности. Суспензия фторопласта-3 используется для антикоррозионных покрытий стальной ап-шфатуры. [c.12]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Пленку сополимера со специально обработанной поверхностью можно склеивать термостойкими клеями с металлами, например углеродистой сталью, алюминием, медью, и с неметаллическими материалами для получения ламинатов с антифрикционной, износостойкой и коррозионностойкой поверхностью, являющихся хорошими конструкционными материалами. В тех случаях, когда допустима высокая температура переработки, пленку сополимера без обработки поверхности сваривают (склеивают) с другими материалами при температуре выше температуры ее плавления при небольшом давлении, ие превышающем 0,7 МПа (7 кгс/см ), или без него. Пленку сополимера используют в качестве адгезива для соединения неметаллических материалов, например ПТФЭ, стекловолокна друг с другом или с металлами. В ламинате ПТФЭ — сополимер ТФЭ—ГФП — листовой металл (в виде рулонного материала) сополимер служит связующим материалом, плавящимся при 260 °С и затекающим под данлением во впадины микрорельефа металла, образуя с ним механические, а с ПТФЭ— механические и, возможно, электрохимические связи. Области [c.114]

    Химические продукты в большинстве случаев вызывают коррозию материала аппаратуры, поэтому при проектировании аппаратов, помимо механических и тепловых свойств, необходимо учитывать коррозионную стойкость конструкционных -материалов. Коррозионная стойкость — важное свойство, определяющее пригодность материала для работы в агрессивных средах. В основном для изготовления аппаратуры и труб0пр01в0д0в применяют различные металлы и их сплавы, хотя находят применение и неметаллические материалы. [c.17]


Смотреть страницы где упоминается термин Конструкционные материалы неметаллические: [c.111]    [c.145]    [c.235]    [c.111]    [c.6]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

ИЗГОТОВЛЕНИЕ ХИМИЧЕСКОЙ АППАРАТУРЫ ИЗ КОНСТРУКЦИОННЫХ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Клеи для склеивания металлов и неметаллических конструкционных материалов

Клен для склеивания металлов и неметаллических конструкционных материалов

Конструкционные материалы

Конструкционные материалы неметаллические химически стойкие

Материалы неметаллические

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ Общая характеристика неметаллических конструкционных материалов и защитных покрытий

Некоторые особенности неметаллических конструкционных материалов

Трубопроводная арматура из неметаллических конструкционных материалов

Трубопроводы из неметаллических конструкционных материалов

Экономическая эффективность использования трубопроводов T,q из неметаллических конструкционных материалов



© 2025 chem21.info Реклама на сайте