Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексоны фотометрическое определение кобальта

    С медью в нейтральном, кислом и щелочном растворах образует желто-коричневый осадок или коллоидный раствор бурого цвета. Образует устойчивые внутрикомплексные малорастворимые соединения со многими элементами. Диэтилдитиокарбаминаты металлов извлекаются органическими растворителями с образованием окрашенных в разные цвета экстрактов. Применяют для отделения, концентрирования, а также фотометрического определения следов элементов (меди, висмута, кобальта, никеля, хрома, ванадия и др.). В присутствии маскирующих веществ (тар-трата, цианида, комплексона П1 и др.) при различных значениях pH диэтилдитиокарбаминаты металлов обладают различной устойчивостью, что используется для их разделения. [c.151]


    Окраска развивается мгновенно и устойчива в водных растворах 15 дней (в неводных — 12 ч). В присутствии комплексона И не мешают определению стократные количества шестивалентных ионов вольфрама, молибдена и урана, четырехвалентных осмия, платины, тория и циркония, трехвалентных алюминия, золота, висмута, железа, лантана и родия, двухвалентных бария, кальция, кобальта, меди, железа, ртути, магния, марганца, никеля, свинца, стронция и цинка, одновалентных калия, лития и натрия, а также анионы — бромид, хлорид, ацетат, карбонат, оксалат, фторид, фосфат, иодид, нитрит, нитрат, сульфид, сульфит и сульфат. Сильно мешают цианид-ионы и ионы четырехвалентного иридия. Результаты, полученные авторами, говорят о том, что предлагаемая система весьма перспективна для фотометрического определения серебра. Недостатком системы является фотохимическая нестойкость реагента [29]. [c.50]

    Фотометрическое определение кобальта в сплавах, содержащих никель, в виде этилендиаминтетраацетатного комплекса [1322]. К анализируемому сплаву прибавляют 1 мл раствора РеСЬ и растворяют в смеси соляной и азотной кислот. Из солянокислого раствора осаждают железо и хром пиридином. К аликвотной части фильтрата прибавляют 5 мл 10%-ного раствора комплексона И1 а 3 мл перекиси водорода, нагревают до кипения, охлаждают, разбавляют водой до 50 мл и измеряют оптическую плотность раствора при 535 ммк. Раствором сравнения служит тот же фильтрат, проведенный через все стадии анализа, но не содержащий перекиси водорода. Этот способ пригоден для определения 10—20% Со. [c.191]

    Фотометрическое определение кобальта в никеле и его солях комплексоном [1200]. Ионы кальция количественно вытесняют ионы кобальта из комплексоната, в то время как не вытесняется никель. К раствору металлического никеля, соли никеля или никелевой руды прибавляют определенное количество 5%-ного раствора комплексона П1 и раствор гидроокиси аммония до щелочной реакции. Затем прибавляют 0,1 М раствор нитрата кальция, 2 мл 2%-ного раствора диэтилдитиокарбамината натрия и нагревают до кипения, так как при комнатной температуре ионы кобальта вытесняются неполностью. Диэтилдитиокарбаминат кобальта с примесью диэтилдитиокарбамината никеля экстрагируют двумя порциями (15 и 10 мл) этилацетата, раствор промывают сначала небольшим количеством воды, затем водой с добавкой 1 мл 2%-ного раствора Hg I2 (для разрушения комплекса никеля, а также комплексов железа и марганца). Оптическую плотность раствора измеряют при 425 ммк. [c.202]


    Наибольший интерес для аналитической химии имеют ко плексы с антраниловой кислотой и с комплексонами — прои водными иминодиуксусной кислоты. Антраниловая кислота применяется главным образом для гравиметрического определения кобальта, а этилендиаминтетрауксусная кислота и другие соединения этого типа — для титрования кобальта и частично для его фотометрического определения. [c.28]

    Кобальт в чистых металлах обычно определяют фотометрически. Описано определение кобальта в виде роданидного [775], антипиринроданидного [1518] комплексов, комплексов кобальта с 1-нитрозо-2-нафтолом [1188, 1321, 1401], ннтрозо-Н-солью [88, 204, 205, 233, 316, 343, 1081, 1082, 1387, 1445, 1499], комплексоном П1 [1200] и монометиловым эфиром о-нитрорезорцина[1417]. Полярографический метод используется реже. Обычно кобальт полярографируют на фоне буферных аммиачных [957] или пиридиновых [1071] растворов. При определении кобальта в меди также полярографируют в растворе фторида натрия [686]. Полярографическое определение примесей других металлов в металлическом кобальте см. [263, 826]. [c.199]

    Принцип метода. Бериллий дает в щелочном растворе с алюминоном [аммонийная соль ауринтрикарбоновой кислоты(NH4)3 22HiiO ,] окрашенное соединение в присутствии комплексона, препятствующего осаждению остальных элементов, реагирующих с этим реактивом меди, алюминия, циркония, титана, марганца, железа, никеля, кобальта и цинка. При фотометрическом определении применяется светофильтр, пропускающий свет длиной волны 515 m A. Избыток комплексона влияет в некоторой степени на интенсивность окраски. Малые количества меди (2 мг в 100 мл) только в незначительной степени мешают определению. Авторы рекомендуют этот метод для определения бериллия в его сплавах с медью, в которых содержанием также мешающего алюминия можно пренебречь. [c.126]

    За последние годы предложены новые довольно высокочувствительные и селективные системы для определения микроколичеств серебра. Так, Дагнел и Уэст [27, 28] предложили для фотометрического определения серебра тройную систему, основанную на взаимодействии 1,10-фенантролина, бромпирогалло-вого красного и одновалентного серебра. Авторами установлено соотношение компонентов в возникающем комплексе [Ag(/оЛеп) г] 2 BPR, где ркеп — 1,10-фенантролин, ВРК—бром-пирогалловый красный. Максимум поглощения комплекса находится при 635 нм, коэффициент молярного погашения 51 ООО, область существования комплекса pH 3—10. Оптическая плотность подчиняется закону Бера в интервале концентраций серебра 0,02—0,2 мкг мл. При увеличении концентраций реагирующих веществ и при стоянии выпадает осадок комплексного соединения.. В присутствии комплексообразователей (комплексона III, перекиси водорода, фторидов) определению серебра не мешают стократные количества многих катионов, а также ацетаты, бромиды, карбонаты, хлориды, цитраты, фториды, нитраты, оксалаты, сульфаты, фосфаты. Сильно мешают цианиды и тиосульфаты. Из катионов не мешают ионы алюминия, бария, висмута, кальция, кадмия, трехвалентного церия, трехвалентных хрома и железа, двухвалентных кобальта, меди, ртути, магния, марган- [c.49]

    В работе [25] предложен экстракционно-фотометрический метод определения следовых количеств ртути с бриллиантовым золеным. Экстрагируют комплексное соединение бензолом (pH от 0,7 до 1,5). Линейность калибровочного графика соблюдается в интервале 0—20 мкг Hg в 10 мл (е = 1 10 ), определению не мешают миллиграммовые количества кадмия, медн, свинца, олова, цинка, брома, хлора. Сильно мешают железо, перхлорат- и роданид-ионы. В другой работе [26] экстрагируют комплексное соединение ртути с 2-меркаптобепзойпой кислотой и измеряют светопо-глощение экстракта в УФ-области. Это дает возможность определять ртуть в присутствии 100-кратных количеств кадмия, свинца, таллия, марганца, алюминия, щелочноземельных металлов, хрома, роданид-ионов. Мешающее влияние 10-кратного количества кобальта и цинка устраняют введением роданид-ионов медь маскируют комплексоном III. [c.120]

    Кобальт(II) легко окисляется до перекисью водорода в присутствии комплексона в щелочной среде. При этом с ЭДТА образуется темно-синий окрашенный комплекс Со (ОН) 2 , который при подкислении присоединяет протон и переходит в фиолетовый комплекс Со (Н20) ". При прибавлении основания процесс протекает в обратном направлении. При стоянии акво-комплекс теряет воду и образуется также фиолетово-красный анион Со У , который потом лишь медленно в сильнощелочной среде может перейти обратно в синий гидроксокомплекс. Все комплексные соединения Со являются исключительно прочными и устойчивы даже в сильнокислом растворе, что может быть использовано для определений с повышенной селективностью. Сайо [56 (99)] проводит обратное титрование раствором цинка в кислой среде с гексациано-ферратами(П) и (III) и бензидином, после того как кобальт был окислен в щелочной среде, причем количество перекиси водорода должно быть строго определенным. Нерезкая точка эквивалентности получается в том случае, если недостаточно точно подобрано необходимое для окисления Со количество Н2О2. При обратных титрованиях Киннунен [57 (137)] применяет раствор соли тория или таллия (III) с ксиленоловым оранжевым. В обоих методах количество определяемого Со сильно ограничено, так как интенсивная окраска комплекса Со легко перекрывает изменение окраски индикатора в точке эквивалентности. Поэтому Флашка предлагает фотометрическую индикацию (см. ниже). Удобно также пользоваться флуоресцентными индикаторами. Особый интерес представляет собой определение Со в присутствии N1 и раздельное определение смеси N1—Со, которые обсуждаются в разделе, касающемся определения никеля. [c.242]



Смотреть страницы где упоминается термин Комплексоны фотометрическое определение кобальта: [c.166]    [c.29]    [c.149]    [c.305]    [c.305]    [c.402]    [c.142]   
Комплексные соединения в аналитической химии (1975) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Комплексоны



© 2025 chem21.info Реклама на сайте