Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения серебра фотометрические

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]


    Возможно спектрофотометрическое определение серебра с применением в качестве реактива дитизоната меди по смешанной окраске дитизонатов серебра н меди [58>]. Хара [58 ] предложил фотометрический метод определения серебра с использованием спиртового раствора дитизона. — Прим. ред. [c.157]

    Другая группа фотометрических методов определения серебра основана на реакциях двухвалентного серебра с различными органическими реагентами. Ионы одновалентного серебра способны окисляться до двухвалентного состояния под действием подходящего окислителя, чаще всего ионов персульфата. При [c.48]

    Многие органические реагенты, применяемые в фотометрических методах определения серебра, содержат в молекуле серу, х ак, нанример, дитизон и роданин. [c.365]

    Экстракционно-фотометрический метод определения серебра с дитизоном выполняется по методу одноцветной или смешанной окрасок. Устойчивость AgHDz к действию щелочей используется для удаления избытка реагента из органической фазы взбалтыванием с разбавленным раствором аммиака окрашенный органический раствор дитизоната фотометрируют по методу одноцветной окраски [869]. По методу смешанной окраски фотометрирование проводят при определенной длине волны, в максимуме поглощения дитизоната или свободного реактива [869]. Если в растворе присутствуют ионы меди, то вместо дитизона в качестве экстракционного реагента можно использовать дитизонат меди, так как последний прочнее, чем дитизонат серебра. Смешанная окраска в этом случае изменяется более резко, от фиолетовой до желтой. Этот способ не требует удаления ионов меди из анализируемого раствора. [c.108]

    Радиоактивные лучи, попадая в фотографическую эмульсию, оказывают на молекулы галогенидов серебра такое же действие, как и лучи видимой части спектра. И так же, как и в случае обычного фотографического процесса, количество восстановленного серебра пропорционально интенсивности облучения. Таким образом, степень экспонирования фотопластинки пропорциональна количеству радиоактивных лучей, попавших на фотоэмульсию. В настоящее время имеют-( ся прецизионные методы определения степени почернения пластинок (фотометрия), с помощью которых можно надежно измерять интенсивность облучения. Тем не менее, в химии фотографические методы регистрации радиоактивного излучения имеют ограниченное применение, потому что достаточно точным этот метод может быть лишь при работе с большими активностями. Фотометрические методы поэтому с успехом применяются в дозиметрии радиоактивного излучения (см. гл. 9). [c.115]


    Фотометрические методы. Разработаны условия фотометрического определения микроколичеств сульфид-ионов по их каталитическому действию, на иод-азидную реакцию [37] (чувствительность определения по окраске иода составляет 1 мкг в 10 мл, в присутствии крахмала — 0,01 мкг в 10 мл) и на реакцию восстановления ионов серебра железом (Н) [34]. Последняя реакция позволяет определять 5-10 —10 г ъ Ъ мл раствора. [c.121]

    К 10 мл анализируемого раствора прибавляют 2 мл 0,1 М раствора комплексона III и устанавливают pH 4—5 посредством ацетатного буфера. Экстрагируют серебро несколькими порциями раствора дитизона в СС , пока окраска органической фазы не перестанет изменяться. Объединенные экстракты встряхивают с 5 мл смеси 20%-ного раствора хлорида натрия и 0,03 N НС1. При этом серебро количественно переходит в водную фазу, в то время как ртуть остается в экстракте. После разбавления водной фазы и установления pH 5 серебро снова экстрагируют раствором дитизона. По окраске неводной фазы серебро определяют затем визуальным, колориметрическим или фотометрическим методами. Приведенная методика пригодна для определения серебра даже в присутствии 100 000-кратных количеств Си, В и РЬ [92]. [c.151]

    Для отделения меди от серебра перед его определением посредством дитизона можно применять также ионообменные методы так, серебро можно полностью отделить от меди на анионите в среде соляной кислоты [254, 518]. В одном из ионообменных методов серебро избирательно поглощают в виде аммиачного комплекса на силикагеле из раствора, содержащего комплексон III последний маскирует медь, а также Hg, Сс1, Хп, N1, В1 и Ге [1610]. Для удаления этих элементов колонку промывают раствором комплексона III, затем десорбируют серебро раствором уксусной кислоты и находят его содержание фотометрически в виде комплекса с 1,10-фенантролином, измеряя оптическую плотность при 440 нм. [c.180]

    Для определения серебра в цианистых гальванических ваннах рекомендованы фотометрические [91], титриметрические [1108 1178], полярографические [402, 1053] и амперометрические [112 методы. [c.190]

    Предложен фотометрический метод определения ртути в продуктах селенового производства и серной кислоте [158], основанный на обесцвечивании диэтилдитиокарбамината ртути в I4 без предварительного отделения ртути от других элементов, кроме серебра (которое осаждается хлорид-ионом и отфильтровывается с нерастворимым осадком после растворения пробы в азотной и серной кислотах). [c.153]

    Для определения серебра предлагается атомно-абсорбционный и фотометрический с -диметиламинобензилиденроданином (рода-нин, реактив файгля) методы. [c.149]

    Из всех методов определения цианидов положительные результаты при анализе такой сложной смеси дал только метод (см. разд. 7.16.2.2), в котором цианид-ионы осаждают нитратом серебра , осадок отделяют, промывают водой, ацетоном и снова водой, после чего обрабатывают серной кислотой достаточно высокой концентрации при отгоне образующихся газов. В дистилляте определяют синильную кислоту любым методом титриметрическим или фотометрическим, в зависимости от содержания цианидов. [c.410]

    Наибольшее распространение в фотометрических методах определения серебра получили дитизон, и-диметиламинобензилиден-роданин и его производные, тиурамат меди как наиболее избирательные и чувствительные реагенты. Перспективным является фотометрирование окрашенных трехкомпонентных комплексов. [c.100]

    Высокочувствительные и перспективные фотометрические методы определения серебра основаны на реакциях образования окрашенных трехкомпонентных комплексов. При взаимодействии серебра с 1,10-фенантролином и бромпирогаллоловым красным при pH 7 образуется интенсивно-голубой комплекс [766]. Макси мум поглош ения тройного соединения находится при 635 нм, молярный коэффициент погашения равен 5,1-10 . Избирательность реакции можно повысить введением в раствор комплексона IIL [c.103]

    Люминесцентные методы определения серебра по распространенности уступают фотометрическим и экстракционно-фотометрическим методам. Известны экстракционно-флуориметрические методы, основанные на измерении интенсивности люминесценции экстрагирующихся трехкомпонентных комплексов серебра, например бензольных экстрактов ионного ассоциата бромидного комплекса серебра с родамином 6Ж [392] или с бутилродамином С [309, 346, 480]. Для устранения помех от присутствия В , 1п, Зп, Ъп, Сс1, N1, РЬ, Ре, Мп и Т1 серебро предварительно отделяют экстракцией раствором дитизона в бензоле из Кислой среды. [c.116]

    Известны фотометрические и экстракционно-фотометрические методы определения серебра в этих материалах посредством дитизона, и-диметиламинобензилиденроданина, в виде ионных ассо-циатов фенантролинового комплекса серебра с красителями, например с бромпирогаллоловым красным или бромидного комплекса серебра с бутилродамином. Рекомендуются также пробирные методы определения и весовые методы после осаждения хлорида серебра. [c.176]


    Известны пробирные методы определения серебра в бедных рудах и продуктах цветной металлургии [57, ИЗ, 177] заключительное определение серебра производится фотометрическим методом с кристаллическим фиолетовым [177], весовым методом — в виде Ag l или в виде металлического серебра после восстановления солянокислым гидразином [57]. [c.179]

    Определение серебра в теллуре. Фотометрический метод определения серебра в виде ионного ассоциата фенантролината серебра с пирогаллоловым красным заключается в следующем [7961. [c.186]

    Серебро (Ag, ат. вес 107,87) встречается в соединениях в одновалентном состоянии. Серебро(И) но имеет значения для фотометрических методов определения. Серебро(1) образует труднорастворимые галогениды и сульфид серебра AgjS. Характерными для серебра являются аммиачные, цианидные и гипосульфитные комплексы. Серебро в следовых количествах нри избытке ионов С1 или S N образует растворимые комплексы. [c.359]

    Из фотометрических методов определения серебра главными являются экстракционно-фотометрический с применением дитизона и метод с применением роданина, осуществляемый в водной среде. Методы близки по селективности, но дитизоновый метод более чувствителен и более точен. Из других методов заслуживает внимания метод с пирогаллоловым красным и косвенный метод с применением карбамата меди и меркупраля. [c.360]

    Дитизонат AgHDz используют в фотометрических методах определения серебра [14—17] молярный коэффициент погашения е = 3,05-10 (удельное поглощение 0,28) при Ямакс = 462 нм. Кривая поглощения дитизоната серебра показана на рис. 17 (стр. 40). [c.361]

    Определение марганца. Определение марганца фотометрическим методом основано на измерении интенсивности окраски ионов Мп04 ( 1макс = 525 нм), образующихся при окислении Мп-+ персульфатом аммония в присутствии ионов серебра, оказывающих каталитическое действие  [c.236]

    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Гексанитрокобальтиаты. Гексанитрокобальтиаты калия, таллия, серебра, а также двойные соли этих катионов мало растворимы в воде. На осаждении Mз o(N02)6 (где М — калий, таллий и др.) основаны методы отделения кобальта от большого числа элементов (см. стр. 68), а также некоторые титриметрические и фотометрические методы определения кобальта. [c.23]

    Избирательность дитизонатного метода можно повысить введением в раствор комплексообразующих веществ [226, 837, 838]. Фотометрическому определению серебра с дитизоном не мешают 100 000-кратные количества Си, В1, 2п, Сс1 и РЬ, если их маски-роват комплексоном III [837, 838, 879]. В присутствии комплексона Ц1 при pH 4—5 [92] экстрагируют Ag, Hg, Аи из растворов, содержащих большие количества Си, В1, 2п, Сс1, N1 и РЬ нагревание при pH 4,7 до кипения в течение 2 мин. этого раствора, содержащего Аи и Нд, приводит к восстановлению золота до металла. Содержание серебра определяют методом одноцветной или смешанной окраски. [c.109]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до 10 %. Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2- 10 доопределение хлора в сере проводят нефелометрически в водной вытяжке, полученной при длительном кипячении серы в бидистилляте [4] или при взбалтывании в течение 2 час. на механической мешалке [44]. Для устранения мешающего действия следов коллоидной и сульфидной (НгЗ) серы проводят окисление [4], либо осаждение в виде Ag2S. Чувствительность метода 5-10- %. Показана возможность применения колориметрического определения хлора методом, основанным на связывании иона хлора двухвалентной ртутью в малодиссоциированное соединение и цветной реакции ртути с дифенилкарбазоном с чувствительностью [c.424]

    Аналогичный метод основан на вытеснении ионами серебра стехиометрического количества ионов железа(П) в реакции с фер-рицианидом калия [519] и последующем фотометрическом определении железа(П) с 2,2"-дипиридилом. Метод рекомендован для определения серебрав галените. Мешают Ге(11) и Ре(П1) и Hg(II). [c.116]

    Констатирующие анализы в цветной металлургии осуществляются с использованием широкого набора химических, физикохимических и физических методов. Так, наиболее распространенными методами определения больших количеств меди являются титриметрические (иодометрический) и электрогравиметрический. Первый способ применяют при анализе руд и продуктов их переработки, второй — при анализе готовой меди. Распространены фотометрические методы, причем еще в ходу даже визуальные измерения (колориметрия), полярография, в частности осциллографи-ческая, и, конечно, многие другие методы. При определении золота и серебра в твердых образцах основным методом остается пробирный анализ. [c.150]

    Описан аналогичный метод фотометрического определения серебра по реакции образования соединения бромидного комплекса серебра с бутилродамином С [309, 345а, 392]. [c.177]

    Известны и фотометрические методы определения содержания серебра в этих препаратах, а также в аргироле и в таргезине [745]. Для анализа некоторых фармпрепаратов пригоден метод, основанный на осаждении серебра избытком м-додецилмеркаптана и амперометрическом титровании избытка реагента раствором AgNOa при потенциале —0,23 в с платиновым микроэлектродом [746] или метод потенциометрического титрования раствором соли V(II) [99]. Серебро в гомеопатических средствах определяют [613, 1383] дитизоновым методом, в биологических материалах — методом хроматографии на бумаге [1400]. Рентгенофлуоресцентный метод анализа фармацевтических препаратов описан в [1431]. [c.193]

    Исследовано комплексообразование серебра с ПАР [620] и ПАН-2 [525]. Для определения серебра предложен фотометрический метод с помощью ПАР и экстракционно-фотометрический метод с использованием ПАН-2. Определению 20 мкг серебра в объеме 10 мл не мешают (в мг) 8е(1У), У — 25 Аз(И1), Р — 10 Те(1У), Ке(УП), ацетат,оксалат,малонат —5 Ве, РО — 2 8г, ТЬ, У(У) — 1 Ни(П1), ЯН, Т1(1У), Р1(1У), Мо, 1г(1П), Ва —0,5 Са, Сг(И1), 8Ь(И1),и(У1) —0,25 РЬ, В1 0,15 Мп, Аи(1П) — 0,1. В присутствии фторида не мешают 2г до 1 тиг и Ре(П1) до 0,15 мг. Мешают С(1, Со, Си, Hg(П), N1, 2п, 8СЫ-, СЫ , ЭДТА [525]. [c.110]

    Бензольный раствор тиурамата меди обесцвечивается лишь при встряхивании с водными растворами солей серебра и ртути. На этом основана методика определения серебра в рубидии. Содержание серебра определяют по ослаблению окраски бензольного слоя (при 435 ммк) после взбалтывания его с раствором пробы [404]. Показана возможность фотометрического определения сульфатной серы по окраске ализарина, который переходит в неводный слой в результате реакции между сульфатами и ализа-ратом циркония [405]. Фотометрическое определение фторидов рекомендуется производить по уменьшению экстракции роданида железа (П1). Отмечается, что чувствительность метода значительно повышается, если изменения оптической плотности раствора роданида железа измерять в органической фазе [406[. [c.257]

    Внутрйкомплексные соединения многих металлов интенсивно окрашены и имеют значения молярных коэффициентов светопоглощения в органических растворителях до 1-10 . Это обстоятельство позволило разработать большое количество экстракционно-фотометрических методов определения малых количеств (до 1-10 %) ионов меди, серебра, цинка, железа, алюминия, никеля, кобальта и других элементов в самых разнообразных образцах ([37, 101, 114, Н5, 117—120, 129—133] см. также стр. 142). [c.77]

    Кроме описанных выше, имеется еще много других фотометрических методов определения йода. а-Нафтолфлавон реагирует с йодом с образованием синего соединения, которое пригодно для спектрофотометрических определений [81]. При взаимодействии йода с гидроксиламином образуется азотистая кислота, которая затем диазотирует сульфаниловую кислоту при последующем сочетании с а-нафтиламином образуется красный краситель [23]. о-Толидин, реагируя с йодом, дает сине-зеленую окраску [55]. Йодид можно определять по реакции с диоксаном [87]. В кислом растворе йодат окисляет пирогаллол до пурпурогаллина с образованием красновато-бурой окраски [103] эта реакция очень чувствительна. Можно использовать уменьшение флуоресценции флуоресцеина, поскольку дийодпроизводное не флуоресцирует [37]. Измерение интенсивности мути от йодида серебра позволяет успешно определять малые количества йодида [95]. Йод определяли также по адсорбции йодида одновалентной ртути на хлориде двухвалентной ртути [44, 77] и по образованию йодида палладия [64]. [c.243]

    Натриево-кобальтинитритный метрд. Метод вполне приемлем для определения калия в некоторых материалах при условии, что детали операций разработаны для этого рода материалов Так, например 1) при исследовании растительных продуктов был разработан метод ,- согласно которому калий осаждают кобальтинитритом натрия не из уксуснокислого, а из слабо азотнокислого раствора, а затем определение заканчивают взвешиванием К2Ка[СЬ(К02)б ] Н3О или титрованием перманганатом и оксалатом 2) рекомендован полупрямой метод , который сводится к осаждению калия в виде кобальтинитрита после разложения природных силикатов или силикатных продуктов обработкой фтористоводородной и хлорной кислотами и к последующему переведению кобальти-питрита в перхлорат 3) для определения малых количеств калия предложен фотометрический метод , основанный на образовании зеленого комплексного соединения, которое кобальт, находящийся в осадке, образует с солянокислым холином и Гексацианоферратом (II) калия 4) описан колориметрический метод определения 0,002—0,40 калия в питьевой воде, основанный на осаждении кобальтинитритом серебра и последу-щем колориметрическом определении содержания нитрита в осадке. По данным авторов метода, кобальтинитрит серебра является наиболее чувствительным реагентом на калий [c.747]


Смотреть страницы где упоминается термин Методы определения серебра фотометрические: [c.104]    [c.108]    [c.180]    [c.205]    [c.356]    [c.57]    [c.67]    [c.5]    [c.193]    [c.194]    [c.465]    [c.148]   
Аналитическая химия серебра (1975) -- [ c.100 ]




ПОИСК







© 2025 chem21.info Реклама на сайте