Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая хроматография классификация жидких фаз

    Классификация неподвижных жидких фаз, используемых в газовой хроматографии. [c.117]

    ИЛИ приведены в табл. 7.9. Затем стараются растворить исследуемое вещество в растворителе, используя все доступные средства, в первую очередь интенсивное перемешивание и встряхивание. Если вещество хорошо растворимо в применяемом растворителе, так что классификацию по растворимости можно без труда провести на основе визуальных наблюдений, то применять для такого анализа метод газовой хроматографии нет необходимости. Если это не так, то вначале и для растворителя, и для растворяемого вещества в одних и тех же экспериментальных условиях определяют газохроматографические времена удерживания и мольные отклики детектора (см. ниже). Затем в хроматограф вводят пробы объемом 2—10 мкл, отобранные из каждого жидкого слоя, возникающего при проверке растворимости. [c.471]


    Широкое применение газовой хроматографии обусловлено многими ее преимуществами по сравнению с другими физикохимическими методами анализа. Виды хроматографии классифицируются по природе разделения адсорбционная (использование различной адсорбируемости разделяемых веществ на твердой поверхности) распределительная (поглощение разделяемых соединений жидкостью, различия в растворимости между двумя сосуществующими жидкими или жидкой и газовой фазами) осадочная (образование нерастворимых соединений в результате химической реакции с осадителем). По признаку агрегатного состояния подвижной и неподвижной фазы классификация дана в табл. 1.32. [c.66]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]


    Следует уточнить некоторые вопросы терминологии, касающиеся классификации хроматографических методов. В самом простейшем случае под термином газовая хроматография подразумевается метод анализа, когда разделение смеси веществ в хроматографической колонке осуществляется в потоке газа (газа-носителя), непрерывно пропускаемого через колонку. Газоадсорбционная (разделение на адсорбенте — угле, силикагеле или оксиде алюминия) и газо-жидкостная (разделение на сорбенте — твердый носитель, покрытый жидкостью — неподвижной жидкой фазой) — это все варианты газовой хроматографии. [c.9]

    Наиболее широко применяется классификация типов хроматографии по характеру фаз, между которыми происходит процесс разделения. По этому признаку различают газовую хроматографию (газожидкостную и газотвердую) и жидкостную хроматографию (жидкость-жидкостную, жидкость-твердую, жидкость-гелевую). При этом первое слово характеризует подвижную фазу, второе — неподвижную. Жидкая неподвижная фаза может быть образована путем закрепления жидкости на твердом веществе. [c.352]

    В связи с существенным вкладом адсорбции хроматографируемых соединений на твердом носителе в удерживаемый объем и ее влияния яа эффективность колонки (особенно адсорбции на поверхности НЖФ — твердый носитель), возникает вопрос о целесообразности уточнения классификации видов хроматографии, принятой в настоящее время. В классификации, основанной на агрегатном состоянии подвижной и неподвижной фаз, обычно выделяют только 4 вида хроматографии хроматография газ — жидкость (ГЖХ), хроматография газ — твердое тело (ГТХ), хроматография жидкость — жидкость (ЖЖХ), хроматография жидкость — твердое тело (ЖТХ). Эта классификация видов хроматографии в настоящее время уже является недостаточной. Она не учитывает, например, участие в разделительном процессе твердого тела (твердого носителя), на поверхность которого нанесена жидкость. Предложена классификация видов хроматографии по агрегатному состоянию подвижной и неподвижной фаз. По этой классификации газовая хроматография на сорбентах, полученных импрегнированием твердого носителя НЖФ, называется газо-[жидко-твердо]-фазной хроматографией. Это название отражает участие твердой фазы (твердого носителя) в хроматографическом процессе. [c.116]

    В газовой хроматографии распределение между газовой и жидкой или соответственно газовой и твердой фазами может быть неочевидным, так как твердые неподвижные фазы модифицируют жидкими соединениями, а жидкие неподвижные фазы наносят на твердые носители, которые влияют на механизм адсорбции. Поэтому проводя классификацию по используемым фазам, необходимо выбирать такой термин, который характеризует преобладающий эффект. Жидко-гелиевая хроматография включает хроматографию на сорбентах со структурой геля и ионнообменную хроматографию (ср. 4.4) [c.214]

    Система индексов удерживания Ковача относится к наиболее распространенному в газовой хроматографии (ГХ) способу оценки условной полярности неподвижных фаз и, применительно к ХМК, полярности и селективности сорбентов [88, 112,113]. В соответствии с формулой (6.26), по которой рассчитывается индекс Ковача I, эта величина не является термодинамической константой соединения, хотя также отражает интенсивность специфических взаимодействий данного сорбата по отношению к ближе всего удерживаемому н-алкану, приведенную к вкладу в сорбцию СНз-группы, если принять, что последний является постоянной величиной в гомологическом ряду н-алканов. Зависимость индексов удерживания от температуры, природы молекулы и неподвижной фазы сложнее, чем для объема удерживания, но их применение нередко дает единственную возможность сопоставить свойства адсорбентов и неподвижных жидких фаз (НЖФ). Здесь уместно вспомнить систему классификации НЖФ, разработанную Роршнайдером [88]. Автор предложил оценивать полярность и селективность неподвижных фаз, сравнивая индексы Ковача пяти соединений (бензола, этанола, метилэтилкетона, нитрометана и пиридина) при 100 °С на полярном сорбенте и сквалане, одной из наиболее неполярных НЖФ. Мак-Рейнольдс видоизменил схему Роршнайдера, выбрав более удобный набор тестовых соединений (1-бутанол, 2-метил-2-пентанол, 2-пентанон, 1-нитропропан, диоксан, 2-октин и др.) и температуру 120 °С [88]. Например, константа Мак-Рейнольдса х для бензола рассчитывается следующим образом  [c.313]

    Неподвижная фаза может быть твердой или жидкой, подвижная — жидкой или газообразной. В зависимости от агрегатного состояния подвижной фазы различают <<жидкостную и газовую хроматографию. Для очистки и фракционирования белков, нулеиновых кислот и их компонентов используется почти исключительно жидкостная хроматография, поэтому (в соответствии с названием книги) мы ограничились рассАЮтрением только этого вида хроматографии во всех его вариантах, каждому из которых посвящена отдельная глава. Варианты жидкостной хроматографии различаются по природе сродства фракционируемых молекул к хроматографическим фазам в соответствии с этим при изложении мы опираемся на классификацию по принципу фракционирования. Бурно развивающиеся в последние годы методы хроматографии при высоком давлении включены в состав каждой главы в виде особых разделов. Тонкослойную хроматографию, ввиду ее технического своеобразия, имеет смысл выделить в отдельную главу, хотя в рамках этой главы и приходится рассматривать различные варианты взаимодействия веществ с хроматографическими фазами. [c.4]


    Водородная связь представляет собой ориентационную силу настолько важную в газо-жидкостной хроматографии, что ее следует рассмотреть отдельно. Юэлл и другие [27 ] опубликовали полезную классификационную схему для предсказания образования азеотропов в процессе фракционной дистилляции, основанную на концепции водородных связей. Хотя азеотроны и не образуются в газо-жидкостной хроматографии, высказывалось мнение, что эта классификация может быть полезной при рассмотрении взаимодействий между веществом и жидкой фазой в газовой хроматографии [54]. Водородные связи — промежуточные по силе между сильными химическими связями и слабыми лондоновскими и дебаевскими силами. Энергия водородных связей уменьшается в ряду Р—Н—Р>0—Н—0>К—Н—N>0—Н—О. Углеродный атом, имеющий нри себе достаточное количество отрицательных атомов или групп (—N02 или галогенов), образует водородные [c.129]

    Подобная классификация является наиболее распространенной (см., например, [4—8]). Однако она, строго говоря, некорректна, так как нам не известно ни одной работы, в которой был бы действительно реализован этот метод. Фактически во всех методиках, которые рассматриваются их авторами как относящиеся к газожидкостной хроматографии, в действительности реализуется не хроматография газ — жидкость, а хроматография газ — жидкость — твердая фаза, так как сорбент представляет собой неподвижную жидкую фазу (НЖФ), которая тонким слоем нанесена на твердую фазу или твердый носитель (ТН). Поэтому целесообразно и более логично, по нашему мнению, второй, наиболее распространенный вариант газовой хроматографии рассматривать не как газожидкостную хроматографию (ГЖХ), а как газо-жидко-твердофазную хроматографию (ГЖТХ). Реальный сорбент в хроматографии газ — жидкость — твердая фаза представляет собой полифазный сорбент (рис. 0.1). В хроматографическом процессе в этом виде хроматографии принимают участие не только две объемные фазы газ и НЖФ, [c.8]


Смотреть страницы где упоминается термин Газовая хроматография классификация жидких фаз: [c.249]    [c.80]    [c.72]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.19 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2024 chem21.info Реклама на сайте