Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы метода разделения веществ кристаллизацией

    Выбор группы методов концентрирования для конкретного анализируемого чистого вещества, с одной стороны, зависит от свойств элементов основы и примесей. Например, концентрирование при анализе щелочных и щелочноземельных металлов проводится, в основном, путем группового выделения примесей (экстракцией, ионным обменом, соосаждением с коллектором и пр.). Для элементов, расположенных в середине Периодической системы, и переходных металлов в высших степенях валентности характерно образование летучих соединений с ковалентным Типом связи и для целей концентрирования при анализе названных элементов и их соединений часто могут быть использованы методы испарения (сублимации) основы. Переходные металлы (с достраивающимися электронными -оболочками) склонны к комплексообразованию в растворах и для их отделения перспективны экстракционные и ионообменные методы. Разделения в группах редкоземельных и актинидных элементов (с достраивающимися /-оболочками) требуют использования высокоэффективных хроматографических методов, в частности, метода ионообменной хроматографии. С другой стороны, важное значение для выбора метода концентрирования имеют физико-химические свойства анализируемого соединения (летучесть, плавкость, растворимость). Так, соединения, которые с трудом переводятся в раствор, следует подвергать обогащению методами испарения или направленной кристаллизации. Те же методы, не связанные с химической обработкой пробы, если они могут обеспечить концентрирование нужных примесей, следует применять и при анализе прочих чистых соединений. [c.319]


    Все физические методы разделения веществ основаны на использовании кинетических явлений или фазовых равновесий. Фазовые равновесия лежат в основе таких методов разделения, как дистилляция, сублимация, кристаллизация, экстракция, адсорбция из газообразной или жидкой фазы и т. д. При этом молекулы разделяемых веществ постоянно переходят через границу раздела фаз в обоих направлениях, стремясь к такому состоянию распределения, при котором, несмотря на продолжающееся движение молекул через границу, в каждой фазе устанавливается постоянная концентрация составляющих смесь веществ. Если разделяемые компоненты мало различаются в отношении свойств, которые для выбранного метода разделения являются решающими (например, давление пара, растворимость или размеры молекул), то концентрирования веществ в одной из фаз практически не происходит. В этом случае достаточного разделения можно достигнуть путем многократного повторения элементарного акта разделения. Наглядным примером такого процесса, в частности лежащего и в основе хроматографии, может служить многократная экстракция. [c.92]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    В основе кристаллизационных методов разделения смесей лежит различие в составах жидкостей (расплав или раствор) и образующейся из нее твердой фазы (кристаллы). Это различие максимально, когда жидкая и твердая фазы находятся в термодинамическом равновесии. Часто оно оказывается существенно выше, чем различие в составах той же жидкости (расплав) и равновесного с ней пара. В таких случаях кристаллизационные методы очистки являются в принципе более предпочтительными, чем дистилляционные. К достоинства.м кристаллизационных методов следует отнести более низкую температуру процесса кристаллизации по сравнению с температурой процесса дистилляции. Это особенно важно при очистке термонестойких веществ и для снижения загрязняющего действия материала аппаратуры. Преимуществом кристаллизационных методов очистки является также то, что они требуют меньших затрат энергии, чем дистилляционные методы, так как теплота плавления вещества существенно ниже теплоты его испарения. [c.104]


    Физические методы разделения основаны на использовании кинетических явлений или фазовых равновесий. Фазовые равновесия лежат в основе таких методов разделения, как дистилляция, сублимация, кристаллизация, экстракция и адсорбция из газообразной или жидкой фазы. В этих процессах молекулы разделяемых веществ постоянно переходят через границу раздела фаз в обоих направлениях, причем они стремятся к такому состоя- [c.9]

    Кристаллизационные методы разделения смесей получили в настоящее время широкое распространение. В зависимости от того, проводится ли кристаллизация расплава или из раствора, они применяются для разделения металлов, различного рода солей, нефтепродуктов и других веществ [1, 2]. В основе разделительной кристаллизации лежат различия в температурах плавления или растворимостях, а также закономерности, связанные с распределением примесей между фазами. Она в свою очередь является основой кристаллизационных методов очистки от примесей. Кристаллизационные методы разделения компонентов базируются также на положениях физико-химического анализа и в частности на различии в составах жидкой и твердой фаз в ходе образования кристаллов расплавов и из растворов. [c.318]

    В основе глубокой очистки вещества методом кристаллизации из растворов лежит элементарный, или простой, эффект разделения макро- и микрокомпонентов системы, под которым подразумевается уменьшение концентрации микрокомпонента при однократном проведении операции кристаллизации, осуществляемой в разделительном элементе — наименьшей самостоятельной ячейке технологического процесса. Величина элементарного эффекта очистки вещества, достигаемая в таком разделительном элементе при захвате кристаллами маточного раствора (сокристаллизация неизоморфных компонентов), характеризуется кратностью очистки вещества Кт).  [c.352]

    В основу классификации можно положить не только число и агрегатное состояние фаз, но и другой принцип — степень превращения разделяемых веществ. Химическим превращением веществ сопровождаются методы, связанные с осаждением, ионным обменом, выделением газа. При электролизе происходит электрохимическое изменение вещества. Группу методов разделения без превращения вещества представляют хроматография, дистилляция, кристаллизация, зонная плавка, молекулярная седиментация н др. Методы разделения и концентрирования могут быть разделены и по числу (кратности) распределений между фазами — однократные и многократные. [c.71]

    Анализируемую смесь веществ сначала пытаются разделить физическими методами. Разделение возможно, например, на основе различной растворимости веществ, входящих в состав смеси. При заметном различии в растворимости компонентов смесь можно разделить обычной или дробной кристаллизацией. Если вещества мало различаются по своей растворимости, то для разделения смеси можно использовать методы экстракции и адсорбции (а также и комбинацию этих методов). Для аналитических целей применяют адсорбционную, газовую хроматографию и хроматографию на бумаге. Последняя особенно удобна для разделения и идентификации сахаров и аминокислот. [c.587]

    Кратко рассмотрены преимущества кристаллизационных методов очистки веществ по сравнению с дистилляционными. Показано, что из кристаллизационных методов весьма перспективен метод противоточной кристаллизации из расплава, с помощью которого проведена успешная очистка ряда органических и неорганических веществ. Проведено сравнение моделей и показано, что реальным явлениям больше отвечает диффузионная модель. Найдено, что диффузионный массообмен дает основной вклад в обший эффект разделения, а наблюдаемое явление частичной перекристаллизации твердой фазы дает значительно меньший вклад. На основе проведенных исследований даны рекомендации к проектированию аппаратуры для проведения процесса противоточной кристализации из расплава. [c.150]

    Предложен (Пат. Японии № 53—22065, № 53—39390, № 53—43472 заявки Японии № 54—52676, № 54—52678, № 54—155180, № 54—158376) ряд оригинальных конструкций аппаратов и технологических схем разделения и очистки веществ методом фракционной кристаллизации при изменении давления в системе. Рассмотрены [338] термодинамические основы этого процесса. Отмечается [211], что фракционная кристаллизация при высоком давлении позволяет значительно сократить продолжительность процесса, так как пересыщение в данном случае достигается практически мгновенно во всем объеме смеси. Рассматриваемый процесс характеризуется также высокой степенью очистки веществ и низкими энергозатратами, однако требует разработки довольно сложной аппаратуры. Экспериментально и теоретически процесс исследован пока недостаточно. [c.289]


    Современная химическая технология изучает производства самых различных веществ продуктов переработки нефти, каменного угля и природного газа, органических и неорганических веществ, полимерных и других материалов. В перечисленных и многих других технологиях, помимо собственно химических превращений, используются типовые процессы перемещения жидкостей и газов (паров), разделения гетерогенных смесей, нагревания и охлаждения, концентрирования растворов твердых веществ, разделения газовых (паровых) и жидких смесей, обезвоживания капиллярно-пористых материалов, растворения, кристаллизации и др. Все эти процессы имеют одинаковую физическую и физико-химическую основу независимо от свойств взаимодействующих веществ, поэтому методы анализа и расчетов и аппаратурное оформление также оказываются одинаковыми. [c.9]

    Процессы, при которых изменяются только количественные соотношения веществ (компонентов), входящих в состав перерабатываемых продз ктов (сырья). В основе этих процессов лежат физикомеханические и физико-химические методы обработки. Сюда относятся сушка, выпаривание, кристаллизация, экстрагирование, разделение газов методом глубокого охлаждения, получение растворов двух и многокомпонентных систем и т. д. Материальный, а следовательно, и тепловой расчет подобного рода процессов основан на законах газового состояния и фазовых равновесий. [c.43]

    Развитие препаративной газовой хроматографии происходило параллельно и на основе развития аналитической газовой хроматографии, когда, с одной стороны, возникла настоятельная необходимость в получении множества индивидуальных соединений достаточно высокой степени чистоты, а с другой стороны, выяснились ограниченные возможности таких распространенных методов, как дистилляция, экстракция, кристаллизация и т. д. Первоначально препаративное направление развилось именно как дополнение к этим общепризнанным методам. Очень быстро выяснились и достоинства, и ограничения метода препаративной газовой хроматографии. К числу достоинств относятся универсальность, обеспечение высокой селективности и эффективности разделения, возможности выделения одного или нескольких компонентов из сложных смесей с достижением за один цикл высоких степеней обогащения, простота процесса и возможность его полной автоматизации. К числу недостатков относятся сравнительно низкая удельная производительность и трудности улавливания веществ из газового потока. Препаративная хроматография применяется в настоящее время главным образом как лабораторный метод разделения веществ, и поэтому ее преимущества бесспорны, а недостатки не столь существенно важны. Следует ожидать, что препаративный хроматограф станет такой же неотъемлемой принадлежностью химических лабораторий, как аналитический газовый хроматограф в настоящее время и ректификационная колонка в прошлом. [c.5]

    Обсуждая некоторые общие аспекты кинетики в аналитической химии, мы рассматривали в основном кинетику химических реакций и прежде всего реакщш, положенных в основу обнаружения и определения веществ химическими методами. В то же время данные о кинетике других процессов (растворение, кристаллизация, парообразование и т. д.), часто используемых в методах разделения и определения, ничуть не менее важны, и кинетика этих и других процессов, положенных в основу методов экстракции, хроматографии, электрохимии и др., будет обсуждаться в соответствующих главах. [c.94]

    Классическая схема разделения веществ методом соосаждения ориентирована на определение микропримесей в растворе. В других схемах осуществления подобных процессов, которые объединяются общим термином кристаллизационное концентрирование, метод позволяет концентрировать микропримеси, находящиеся в твердой матрице. В основе кристаллизационного концентрирования лежит процесс перераспределения матричных и примесных компонентов анализируемого образца между жидкой фазой расплава и ти солевого раствора эвтектического состава и твердой кристаллической фазой при условии управляемого перемещения межфазной границы. В результате управляемой кристаллизации микропримеси, оттесняясь фронтом кристаллизации, концентрируются в тонкой пленке, образующейся на поверхности кристаллического образца. [c.155]

    Для разделения смесей, в том числе твердых веществ, в последнее время широкое распространение получил метод хроматографии, основы которого были разработаны М. С. Цветом в 1903—1906 гг. Если метод разделения смесей путем кристаллизации основан на различной растворимости компонентов, то метод хроматографии основан на различной адсорбируемости компонентов смеси каким-либо адсорбентом. Иногда это различие настолько велико, что, обработав раствор небольшим количеством адсорбента, можно полностью извлечь один компонент смеси, оставив другой в растворе. Однако в большинстве случаев различие адсорбируемости компонентов смеси недостаточно для их полного разделения при однократной обработке раствора адсорбентом. Л ногократная же обработка раствора небольшими количествами адсорбента неудобна и связана с большими потерями. Вместо этого раствор смеси пропускают через столб адсорбента (окись алюминия, силикагель и др.), заполняющего вертикальную стеклянную трубку. Это и есть хроматографическая колонка, предложенная М. С. Цветом. В хроматографической колонке происходит поглощение компонентов смеси адсорб том. При этом компоненты, обладающие наибольшей адсорбируемостью, поглощаются первыми — верхними слоями адсорбента, а компоненты, обладающие меньшей адсорбируемостью, проходят дальше и задерживаются последующими слоями. Столб адсорбента с такими слоями называется хроматограммой. Далее колонку промывают серией рас- [c.33]

    Кристаллизационные методы разделения смесей, как и дистилляционные, к настоящему времени получили щи-рокое распространение. Так, дробная перекристаллизация веществ из раствора применяется для очистки некоторых смесей и продуктов нефтепереработки. В связи с проблемой получения веществ особой чистоты были предложены два новых метода кристаллизационной очистки зонная перекристаллизация (зонная плавка) и противо-точная кристаллизация из расплава. Зонная плавка является конечной стадией очистки ряда получаемых в настоящее время веществ особой чистоты. Противоточпая кристаллизация из расплава, по-видимому, имеет также большую перспективу, поскольку, как показали исследования, она обладает даже преимуществами перед зонной плавкой в отношении времени проведения процесса и энергетических затрат. В основе всех кристаллизационных методов лежит различие в составах жидкости (расплав ЕЛИ раствор) и образунэщейся из нее в ходе процесса (кристаллизации) твердой фазы (кристаллы). [c.85]

    Разделение и концентрирование имеют много общего как в теоретическом аспекте, так и в технике исполнения. Методы дпя решения задач одни и те же, но в каждом конкретном случае возможны модификации, связанные с относительными количествами веществ, способом получения и измерения аналитического сигнала. Например, дпя разделения и концентрирования применяют методы экстракции, соосаждения, хроматографии и др. Хроматографию используют главным образом при разделении сложных смесей на составляющие, соосаждение — при концентрировании (например, изоморфное соосаждение радия с сульфатом бария). Можно рассмотреть классификацию методов на основе числа фаз, их агрегатного состояния и переноса вещества из одной фазы в другую. Предпочтительны методы, основанные на распределении вещества между двумя фазами такими, как жидкость— жидкость, жидкость— твердое тело, жидкость—газ и твердое тело—газ. При этом однородная система может цревращаться в двухфазную путем какой-либо вспомогательной операции (осаждение и соосаждение, кристаллизация, дистилляция, испарение и др.), либо введением вспомогательной фазы — жидкой, твердой, газообразной (таковы методы хроматографии, экстракции, сорбции). [c.210]

    Рассмотрены физико-химические основы фракционной кристаллизации из расплавов, ]1астворов и паровой фазы. Изложены вопросы теории процессов разделения смесей и очистки веществ от примесей методами фракционной кристаллизации. Описано аппаратурное оформление процессов. Указаны области их возможного применения. [c.2]

    Основы немецкой классификации изложены в книге Gruppeneinteilung der Patentklassen , 4-е издание (1928 г.) которого имеется в русском переводе. В 1958 г. вышло 7-е издание этого труда. Немецкая классификация патентов аналогична принятой в Советском Союзе. Химические патенты относятся в основном к классу 12 Химические способы и аппараты, поскольку они не вошли в другие классы . Класс 12 разделяется в свою очередь на 18 подклассов 12а — Способы кипячения и оборудование для выпаривания, концентрирования и перегонки в химической промышленности 12Ь — Кальцинирование, плавление 12с — Растворение, кристаллизация, выпаривание жидких веществ 12d — Осветление, выделение осадков, фильтрование жидкостей и жидких смесей 12е — Адсорбция, очистка и разделение газов и паров, смешение твердых и жидких веществ, а также газов и паров друг с другом и с жидкостями 12f — Сифоны, сосуды, затворы для кислот, предохранительные устройства 12g — Общие технологические методы химической промышленности и соответствующая аппаратура 12h — Общие электрохимические способы и аппаратура 121 —Металлоиды и их соединения, кроме перечисленных в 12к 12к— Аммиак, циан и их соединения 121 — Соединения щелочных металлов 12т — Соединения щелочноземельных металлов 12п — Соединения тяжелых металлов 12о — Углеводороды, спирты, альдегиды, кетоны, органические сернистые соединения, гидрированные соединения, карбоновые кислоты, амиды карбоновых кислот, мочевина и прочие соединения 12р— Азотсодержащие циклические соединения и азотсодержащие соединения неизвестного строения 12q — Амины, фенолы, нафтолы, аминофенолы, аминонафтолы, аминоантраце-ны, оксиантрацены, кислородо-, серо- и селеносодержащие циклические соединения 12г — Переработка смол и смоляных фракций из твердых топлив, например сырого бензола и дегтя добывание древесного уксуса, экстракция угля, торфа и пр. добывание и очистка горного воска 12s — Получение дисперсий, эмульсий, суспензий, т. е. распределение любых химических веществ в любой среде, использование химических продуктов или их смесей как диспергирующих или стабилизирующих средств. Многие подклассы в свою очередь делятся на группы и подгруппы. [c.89]

    Получение ФАВ немыслимо без использования современных методов выделения, разделения и очистки веществ, которые лежат в основе тонкой физико-химической биотехнологии (ТФХБТ). Именно на этих методах основано получение ФАВ из природных источников. Получение биохимических и лекарственных препаратов из н ивотного и растительного сырья включает процессы экст-тракции, осаждения, кристаллизации, ионного обмена, хроматографии и др. При этом до последнего времени получение таких препаратов, как нанример инсулин из поджелудочной железы животных и алкалоиды из растений, представляло собой систему многих, иногда десятков стадий, процессы длились днями и даже неделями. [c.7]

    Управляемая кристаллизация может быть использована и при получении стандартных образцов состава, необходимых для градуировки методик определения микропримесей в особо чистых вешествах. Прежде всего, эти методы целесообразно применять для снижения до требуемого уровня относительных содержаний примесей в исходных веществах (матрицах). Поскольку концентрирование примесей и очистка от них являются двумя сторонами одного и того же процесса, при выборе техники очистки большую помощь могут оказать изложенные в этой книге теоретические основы и методические особенности разных вариантов кристаллизационного разделения (в том числе ЦНК и НК, ВСЭ). Не менее сложная задача получения однородной искусственной смеси матрицы и примесей, как показывают результаты работы [260], может быть решена быстрой кристаллизацией расплава заданного исходного состава. [c.175]

    При наличии эвтектик может быть рекомендован еще один метод кристаллизационного разделения. Он получил название аддуктивной кристаллизации. В основе его лежит химическое взаимодействие одного из компонентов смеси с дополнительно вводимым веществом. Например, при разделении образующей эвтектику двухкомпонентной смеси это выглядит так. Имеем систему из компонентов А и В [2, с. 228—230]. При добавлении третьего компонента X смесь в ходе кристаллизации разделяется на соединение АХ и компонент В. Затем АХ расщепляется на А и X тем или иным способом. [c.330]


Смотреть страницы где упоминается термин Основы метода разделения веществ кристаллизацией: [c.318]    [c.25]   
Смотреть главы в:

Кристаллизация в химической промышленности -> Основы метода разделения веществ кристаллизацией




ПОИСК





Смотрите так же термины и статьи:

Метод веществам

Методы разделения

Основы методов

Разделение веществ



© 2025 chem21.info Реклама на сайте