Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамический анализ химических систем

    Термодинамический анализ последовательно протекающих твердофазовых реакций может использоваться для решения вопросов устойчивости отдельных фаз и соединений, а также для установления наиболее общих закономерностей протекания химического взаимодействия в твердой фазе. Выяснение последовательности протекания реакций и термодинамической вероятности образования тех илн иных соединений помогает объяснять процессы в системе и находить пути совершенствования технологии. [c.237]


    Термодинамический анализ дает возможность судить об оптимальной для выхода продукта температуре реакции. Направление химической реакции определяется знаком изменения изобарно-изотермического потенциала АО (энергии Гиббса) или изохорно-изотермического потенциала АЛ (энергии Гельмгольца), происходящего в Системе в результате реакции. [c.49]

    Термодинамический анализ химических превращений. Смещение равновесия в системах при изменении температуры, давления и концентраций реагирующих веществ. [c.60]

    Методы анализа химического равновесия Гиббса и Вант-Гоффа— Нернста ограничены. Так, метод Гиббса, хотя он и дает принципиальную возможность рассмотрения любой проблемы, связанной с термодинамическим равновесием, но в применении к химическим реакциям ограничен, поскольку используемые в нем величины являются функциями состояния, относящимися либо к системе в целом (например, внутренняя энергия), либо к ее отдельным Компонентам (химические потенциалы). [c.166]

    Задача химической промышленности — наиболее полное и целесообразное использование исходного сырья путем нревраш,епия в определенные химические соединения, которые могут быть как промежуточными, так и конечными продуктами технологического процесса. Поскольку химические реакции связаны с изменением расположения атомов в молекулах исходных веш,еств по сравнению с расположением тех же атомов в молекулах продуктов реакции, то перед химиком возникает задача осуществить химическое превращение в таких условиях (давление, температура и т. д.), которые способствовали бы преимущественному протеканию рассматриваемой реакции с образованием желаемых продуктов. Тщательный термодинамический анализ реагирующей системы часто помогает выяснить необходимые условия получения того или иного продукта, позволяет установить, какие реакции невозможны, и привлекает внимание к осуществимым реакциям. Целесообразность такого термодинамического анализа определяется наличием достаточно надежных основных термодинамических свойств веществ, однако даже при отсутствии всех необходимых данных часто оказывается возможным, опираясь на закономерности в термодинамических свойствах веществ, сделать некоторые обоснованные предположения о продуктах реакции. По мере накопления соответствующих данных применение термодинамического анализа в современных исс.ледованиях получает все более широкое распространение. [c.173]

    Вероятно, в химический состав Юпитера и Сатурна в отличие от земного шара входит относительно мало кислорода и относительно много азота, а в этих условиях — в отсутствие конкуренции с кислородом и при наличии водорода, как явствует из термодинамического анализа реакции синтеза аммиака (см. далее), весь азот практически по мере остывания планеты должен был бы обратиться в аммиак. Таким образом, достаточно лишь одного изменения количественного соотношения элементов в составе планеты N>0 вместо 0>N (как на Земле), чтобы произошло качественное изменение всей химии. Отнесение азота в условиях подобной планеты к химически недеятельным элементам было бы совершенным абсурдом, так как при достаточно высоком содержании электроположительных элементов весь азот (если только не существует какого-либо специального, освобождающего азот процесса, подобного фотосинтезу) входил бы в состав планеты исключительно в виде соединений. Океаны вместо воды были бы заполнены жидким аммиаком, а горные породы состояли бы из простых и сложных нитридов. В частности, ту роль, которую играет в построении земной коры карбонат кальция, играл бы его аналог в системе соединений азота — цианамид кальция (см. стр. 425), как вешество, весьма экзотермическое и чрезвычайно устойчивое в условиях отсутствия кислорода и воды, а горные породы были бы переполнены вместо зерен кварца твердыми зернами нитрида кремния (соединение резко экзотермично). [c.424]


    В нашей стране обобщающая монография по термодинамике нефтехимических процессов издана в 1960 г. (А. А. Введенский. Термодинамические расчеты нефтехимических процессов. ГОНТИ, Л., 1960, 576 с.). Эта превосходно написанная для своего времени книга в определенной степени устарела по следующим причинам. Ее значительная часть посвящена анализу разрабатывавшихся в 50-е годы методов определения стандартных термодинамических функций, которые сейчас практически не используются. Конкретный термодинамический анализ выполнен для тех реакций, которые получили промышленное применение в 30-е —50-е годы. Практически нет данных о химических равновесиях в системах с несколькими фазами, о равновесиях в растворах. Основная конкретная информация относится к простым реакциям. [c.6]

    Теоретическое исследование системы газ — адсорбент следует начать с термодинамического описания адсорбционной системы. В этом макроскопическом описании не> учитываются непосредственно ни структурные особенности адсорбента и адсорбируемых молекул, ни особенности межмолекулярных взаимодействий между ними. Для установления связи с этими особенностями адсорбционной системы, т. е. для рассмотрения ее на молекулярном уровне, необходимо привлечь молекулярно-статистическое описание системы газ — адсорбент. В более простых случаях — для однородных адсорбентов и малых заполнений поверхности — на основании сведений о межмолекулярных взаимодействиях и о структуре и химической природе адсорбента и адсорбируемых молекул будут проведены количественные расчеты измеряемых хроматографическими, статическими и калориметрическими методами термодинамических характеристик адсорбции. Далее будет описано решение обратных задач, т. е. определение некоторых структурных параметров молекул на основании измеряемых с помощью газовой хроматографии термодинамических характеристик адсорбции при малых (нулевых) заполнениях поверхности (хроматоструктурный анализ, хроматоскопия). Наконец, будут рассмотрены некоторые простые модели межмолекулярных взаимодействий адсорбат—адсорбат, чтобы продвинуться в область более высоких заполнений поверхности и описать фазовые переходы для двухмерного состояния адсорбированного вещества. [c.127]

    В процессе синтеза химических соединений обычно ведется термодинамический анализ, на основе которого выбирается оптимальный вариант, а также идентификация продуктов реакции путем сопоставления их с веществами, представленными в каталоге системы. [c.448]

    В основу нового физико-химического метода анализа положено измерение скоростей установления термодинамического равновесия в системе, находящейся в постоянном магнитном поле, после воздействия на нее волн радиочастотного диапазона [359— 361]. Для целей анализа могут быть использованы как скорости спин-спиновой (t a), так и спин-решеточной (у ) релаксации. По своему характеру этот метод близок к кинетическому [561[. Роль своеобразного катализатора, ускоряющего процесс магнитной релаксации ядер, играют локальные магнитные поля, создаваемые парамагнитными частицами. Хром(1Н), находящийся в эффективном s-состоянии, является парамагнитным для него время релаксации протонов определяется скоростью броуновского движения [360]. Кроме того, показано, что в растворах солей r(III) время спин-решеточной релаксации (Т ) много больше времени спин-спиновой релаксации (T i T j). Постулируется, что это условие является признаком ковалентности связи в случае растворов солей трехвалентного хрома оно обусловлено большой стабильностью аквокомплексов [Сг(Н20)в] +. [c.69]

    Промежуточную группу образуют псевдоравновесные синтезы, которые выполняются в условиях, когда ряд химических превращений запрещен по причине их кинетической заторможенности, а ход остальных полностью определяется термодинамически ми соображениями. Так, изучая системы с участием оксалатных комплексов, следует помнить, что щавелевая кислота уже при 25 °С нестабильна по отношению к распаду на воду, СО и СО . (Д(3° = —76,6 кДж/моль), поэтому термодинамический анализ во многих случаях должен указывать на полное разрушение комплексов с образованием СО и СО2. Но если температура недостаточно велика для того, чтобы процесс разрыва связи С—С шел с заметной скоростью, при выполнении этого анализа нужно игнорировать продукты, содержащие единственный атом углерода. [c.396]

    Применительно к металлургическим системам практический интерес представляет анализ случая, в котором поверхностное натяжение расплава (о ) больше поверхностного натяжения твердого тела (а ). Этот случай реализуется при контакте жидкого металла с тугоплавкими, термодинамически устойчивыми химическими соединениями типа окислов, нитридов и карбидов. В этом случае поверхностное натяжение объемной фазы или натяжение толстой, пленки (ст ), которое определяется по уравнению о = сТж + [c.134]

    Термодинамический анализ позволяет определить вероятность осуществления того или иного процесса. Реализация этой вероятности зависит от ряда факторов. Согласно положениям химической кинетики переход системы из од-АнтиВироВаннш. ного состояния в другое осуществля- [c.156]


    Рассмотренные выше подходы, основанные на количественной оценке роли растворителя в химических реакциях, не всегда можно использовать из-за отсутствия необходимых данных или тех или иных ограничений в сложной системе. Поэтому остановимся на достаточно общем подходе -термодинамическом анализе роли растворителя в химических реакциях. [c.28]

    Детальное изучение химической схемы процесса возможно путем термодинамического анализа всех предполагаемых реакций, в результате которых образуются самые различные вещества карбиды, окислы и нитриды [21, 59, 216—218]. Как известно, термодинамическая возможность протекания любой химической реакции определяется изменением ее изобарно-изотермического потенциала при данной температуре Г (° К). Если < О, то реакция возможна, если АС° > О, то она не может б-ыть осуществлена. Абсолютная величина АС , (при АС° < 0)характеризует, насколько изучаемая система отдалена от состояния равновесия реакции, [c.87]

    Современная теория физико-химического анализа рассматривает физико-химические системы, состояние равновесия в которых определяется термодинамическими факторами температурой и давлением. К этим двум внешним факторам следует также добавить состав системы. Всего есть три внешних фактора. Отсюда применительно к термодинамическим системам правило фаз принимает вид [c.195]

    При термодинамическом анализе образования дефектов в полупроводниковых кристаллофосфорах в гл. VI мы учитывали равновесие между твердой и газообразной фазами, задаваясь определенным составом последней. В реальных, даже строго контролируемых условиях, он может быть довольно сложным, вследствие взаимодействия между ингредиентами двух фаз и диссоциации вешеств, составляющих систему. Положение, однако, облегчается тем, что при температуре прокаливания реакции в газовой фазе и на поверхности твердой фазы идут с большой скоростью и потому при благоприятных условиях эксперимента достигается состояние, достаточно близкое к равновесному, чтобы можно было использовать термодинамические методы расчета состава системы. Это подтверждается тем, что основанная на таком предположении теория химических транспортных реакций [33] находится в хорошем согласии с экспериментом [52]. [c.279]

    Введение в термодинамический анализ системы функции избыточного тепла позволяет также учесть любые другие поступления или расходы тепла (например, тепловые потери, теплоту дегидратации, тепло химических превращений, тепло, дополнительно вводимое греющими элементами, и т. д.), поскольку избыточное тепло неизбежно распределится в них. С учетом сказанного уравнение (И, 44) можно представить в виде [c.49]

    Система четырехокись азота — двуокись азота принадлежит к классу химически расторможенных систем [1, с. 325—327]. Химическое равновесие в системе N204 — N02 устанавливается (практически) мгновенно вслед за изменениями температуры, давления и объема. Но для термодинамического исследования химического равновесия надо иметь возможность изучить не только химически расторможенную, но и химически заторможенную систему при неизменных числах молей (в нашем примере) четырехокиси и двуокиси азота. Осуществить это на практике для системы N304 — N 2 невозможно, и приходится прибегать к фиктивному торможению [1], т. е. рассматривать изменение, например, температуры без изменения числа молей четырехокиси и двуокиси азота. При фиктивном торможении четырехокись и двуокись азота как бы становятся компонентами. Можно изменять число молей двуокиси азота при постоянном числе молей четырехокиси и наоборот. Без фиктивного торможения термодинамический анализ химического равновесия в системе МзО — N0 невозможен. [c.103]

    Оценки (4) представляются интересными в силу того, что, во-первых, они получены фактически из данных по давлению насыщенного пара, а определяют погрешность нахождения Т превращения твердое — н идкость , во-вторых, они указывают на существенную зависимость а -Т от физико-химических свойств БС, так как дР- дТ (энергетические свойства системы) меняются в зависимости от температуры и состава. Таким образом, при проведении ТЭ с одной и той же инструментальной точностью надежность точек ликвидуса будет разной. Термодинамический анализ свойств БС показывает, что наибольшие значения оГд следует ожидать в окрестностях понвариантных точек системы — точек однородного состава, эвтектики, перитектики и соединения [.5]. Если имеется набор эксперименталь-1ШХ Р — Т — X данных БС, то, используя первый вариант выражения (4), можно установить аТ . Для предварительной оценки возможностей метода ТА получения Т — х проекции конкретно выбранной БС можно воспользоваться методами [c.156]

    Расчет равновесного состава продуктов простых реакций не представляют особых вычислительных проблем и традиционно производится по уравнению закона действующих масс. В случае расчетов в сложных хи.мических системах возникают, как правило, исключительно сложные вычислительные трудности, особенно когда исходное сырье и продукты реакции представляют собой многокомпоне1ггную смесь химических соединений. По этой причине при термодинамическом анализе многих термодинамических процессов химической технологии ограничиваются анализом только функции энергии Гиббса или константы равновесия реакций от температуры, давлещи, состава сырья и т.д. [c.156]

    В классической механике возможность проведения существенных обобщений открывает переход к статистической физике. Анагюгично, при анализе химических превращений роль статистической физики играет термодинамика, которая благодаря выявлению движущих сил этих превращений позволяет делать общие выводы о направлении эволюционных изменений в сложной химической системе без знания конкретного механизма процесса. Поэтому использование приемов термодинамики неравновесных процессов позволяет проводить эффективный совместный кинетико-термодинамический анализ протекания многих сложных химических процессов, трудно осуществляемый иными методами. [c.292]

    Задаваясь конкретной схемой химических превращений и используя приведенные выще соотнощения, несложно описать термодинамику любой реакционноспособной системы непосредственно в ходе химических превращений и провести совместный кинетико-термодинамический анализ протекания процесса. [c.315]

    Феноменологическая термодинамика необратимых процессов применима главным образом к анализу химических реакций или таких изменений в открытых системах, для которых можно использовать понятия макроскопической скорости реакции и химического потенциала. При этом вычисление диссипативных функций основано на уравнениях химической кинетики, которые позволяют производить совместный кинетико-термодинамический анализ динамической эволюции реакционноспособной системы через вычисление скоростей и движущих сил процессов. Однако большинство из сушествующих математических моделей многих каталитических, технологических и особенно биологических систем с использованием дифференциальных уравнений могут отразить лишь отдельные стороны исследуемых процессов, но не описывают сложные реакции в совокупности. Особенно это относится к физико-химическим явлениям, лежащим в основе важнейших биологических процессов роста, развития, адаптации к внешним воздействиям и эволюции живых структур. [c.394]

    При практической реализации илазмохимических ироцессов на первый план выступает проблема минимизации энергозатрат на получение полезного продукта. Для химических ироцессов в газоразрядных системах, в которых на начальной стадии - ири разогреве реагирующих веществ - не развиваются процессы, ведущие к созданию сильной неравновесности, существует возможность сравнительно простого анализа энергобаланса системы на основе термодинамического расчета степени конверсии (степени превращения реагентов в продукты), а также равновесного состава комиоиеитов системы в зависимости от энергии. [c.463]

    Какие научные дисциплины являются пофаничными для химической кинетики Прежде всего синтетическая химия, располагающая офомным фактическим материалом по химическим реакциям, а именно знанием, какие реагенты в каких условиях превращаются в те или иные продукты. Строение вещества дает необходимые сведения о строении частиц, межатомных расстояниях, дипольных моментах и др. Эти данные необходимы для построения предполагаемых механизмов превращения. Химическая термодинамика позволяет рассчитывать термодинамические характеристики химического процесса. У математики и1нетика заимствует математический аппарат, нужный для описания процесса, анализа механизма, построения корреляций. На данные молекулярной физики кинетика опирается, когда анали-з 1руется процесс в зависимости от фазового состояния системы, где протекает реакция. Спектроскопия и хроматофафия вооружают кинетику методами контроля за протеканием процесса. Лазерная спектроскопия служит основой для создания уникальных методов изучения возбужденных состояний молекул и радикалов. [c.17]

    Экстракция воды. Экстракция воды играет значительную роль при извлечении вещества по гидратно-сольватному механизму. Некоторые авторы [119—121] полагают, что в системах с участпем нейтральных фосфорорганических соединений образуются различные сольваты, например ТБФ-НаО, ТБФ-2Н20. Однако, как было, показано Розеном [123], в этой системе проявляется значительная положительная неидеальность, а образование соединений, как известно, должно приводить к отрицательной неидеальности. Аналогичный вывод был сделан и Михайловым [161]. О слабом химическом взаимодействии говорит также линейная зависимость концентрации воды в органической фазе от ее активности в водной [122]. Используя физико-химические методы, Николаев с сотр. не обнаружили в органической фазе данной системы каких-либо химических соединений [162], однако в системе Н2О — ТБФО авторы предполагают образование клатратов [163]. Вместе с тем Розен с сотр. [123], исследовав экстракцию воды растворами ТБФ, пришли к заключению, что в органической фазе между ТБФ и водой образуется слабая водородная связь, энергия которой, по мнению авторов, составляет примерно половину энергии связи вода — вода. Проведя термодинамический анализ, авторы заключили, что основной вклад при экстракции воды дает энтропийный фактор. [c.404]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    Первый цикл исследований был поставлен на системах, ранее изученных экспериментально. Результаты моделирования не только совпали с данными химии и технологии моделируемых систем, но и подтвердили выявленные с помощью других методов тонкости протекания процессов, прежде всего их стадийность (подробнее см. Карпов И. К., Шепотько М. Л., Черняк А. С. Термодинамический анализ сложных химических равновесий в гетерогенных мультисистемах как метод изучения процессов растворения и выщелачивания — Журн. физ. химии, 1979, т. 43, № 10, с. 2476—2480). Это показало, что использованный метод описания процессов ми-нералообразования пригоден для получения ценной и надежной информации о процессах разрушения веществ растворителями. Метод позволяет на основании полученных зависимостей выбирать оптимальные условия проведения того или иного процесса, предсказывать его динамику, подбирать подходящие растворители. [c.16]

    Необходимо включить в программу исследований и гетерогенные равновесия. В первую очередь надо измерить растворимость мало растворимых твердых веществ в растворителе в окрестности его критической точки. Уже в простом случае гомогенного химического равновесия ЫаО = 2Ы0а в растворе при фиктивном торможении (без него невозможен термодинамический анализ) система двуокись углерода — окислы азота из двойной превращается в тройную. Термодинамический анализ тройных критических бесконечно разбавленных растворов гораздо более сложен, чем двойных растворов. Вместо критической кривой двойного раствора появляется критическая поверхность (к. п.) тройного раствора. Вместо уравнения (П.4) критической фазы двойного раствора надо пользоваться уже уравнением для критической фазы тройного раствора  [c.119]

    При термодинамическом анализе системы часто бывает удобно выбрать в качестве ее компонентов определенные соединения без детализации их составляющих. Напримф, фазовую диаграмму систе1яы Ре-0 или, по крайней мере, большую ее часть удобно и адекватно можно описать как систему Ре0-Ре2 0д, т.е. как результат смешения РеО и Ре,Оз, а не Ре и О. Если эти соединения рассматривают как компоненты, сохраняющие индивидуальность, то их надо описывать подходящими термодинамическими функциями, такими как химический потенциал и активность. Определение и использование этих функций -требует некоторого внимания и составляет содержание следуюпщх разделов. [c.303]

    Ряд физических методов изучения комплексов в растворах дает скорее сведения об активности, чем о концентрации данной формы. Например, потенциометрически можно определить активности водородных ионов и ряда ионов металлов и неорганических анионов (см. гл. 7). Если было бы возможно измерить активности форм, А, ВА и В или ВА ь то полные или ступенчатые термодинамические константы устойчивости могли бы быть получены непосредственно по уравнению (1-1). С другой стороны, если бы равновесные концентрации этих форм могли быть измерены, например, химическим анализом инертной системы (см. гл. 6), то соответствующие стехиометрические константы устойчивости можно было бы рассчитать по уравнениям (1-5) или (1-6). Однако поскольку измерить активности или концентрации более чем одной или двух присутствующих форм редко возможно, то обычно этим путем нельзя получить значения констант устойчивости. [c.32]

    Согласно Бергу, Карпентеру, Дейли, Деву, Герцелю, Хпппли, Киндши и Поповацу [110], при планировании химического исследования вначале необходимо изучить имеющуюся по этому вопросу. литературу, затем, не начиная экспериментальной работы, провести термодинамический анализ системы и оцепить возможность протекания той или иной реакции и, наконец, если это выполнимо, приближенно рассчитать максимальный выход продуктов реакции и определить условия, при которых можно достичь этого выхода. Бо избежание неверных выводов необходимо четко представлять себе общие закономерности, правила и ограничения термодинамического метода анализа. Так, например, термодинамика рассматривает только условия равновесия системы и ничего не говорит о скорости достижения [c.173]

    ФАЗОВЫЙ анализ — анализ химической природы, состава, структуры, дисперсности п количества фаз, входящих в состав исследуемого многофазного материала. Отличается от элементного химического анализа, с помощью к-рого определяют содержание тех или иных элементов во всем материале, и от вещественного анализа, к-рым устанавливают наличие и количество определенных соединений элемента независимо от их распределения в отдельных фазах, составляющих исследуемый материал. Ф. а. осуществляют после разделения фаз или ие прибегая к разделению, в равновесных или неравновесных системах либо в стадии превращения. В пом используют различные химические, физико-химическио и физические методы рентгеноструктурпый, металлографический, петрографический, кристаллооптический, элект-рониомикроскопический, термографический, объемный газовый и др. Важнеггшей операцией Ф. а является разделепие фаз, для чего обычно прибегают к хим. методам избирательного растворения и электрохим. методам селективного анодного растворения. Избирательность хим. методов растворения основана либо на существенных различиях в термодинамической устойчивости разделяемых фаз в условиях проведения анализа (термодинамическая селективность), либо на больших различиях в скорости взаимодействия различных фаз с применяемым реактивом, переводящим в раствор за определенное время в определенных условиях (т-ра, кпс-лотность и т. и.) одни фазы и практически не успевающим растворить другие (кинетическая селективность). В электрохим. методах растворения (применяемых при анализе электропроводных материалов) также используют различную термодинамическую устойчивость фаз в условиях контакта с определенным раствором при заданном потенциале (или плот- [c.632]

    НИЮ избирательности сорбции ионов на сильно набухающих ионитах. Это рассматривается обычно как химическое явление при использовании различных методов термодинамического анализа ионного обмена, в том числе при введении понятия давления набухания [160, 162]. Однако в отдельных, сравнительно редких случаях величина ДФдаб Для системы органический ион—ион металла (или другой малый симметричный ион) уменьшается с ростом степени набухания ионитов, что вызывает увеличение избирательности сорбции более селективных ионов. Обе возможности представлены в табл. 3.3, где ДФнаб относится к состоянию ионита, приближающемуся к максимальному заполнению ионита органическими противоионами. [c.104]

    Эти химические процессы, протекающие на границе раздела, оказывают влияние на все физико-химические свойства полимеров, в том числе на их термическую и термоокислительную стабильность. Из изложенного следует, что химия поверхности наполнителей является одним из основных факторов, влияющих не только на их химическую, но и структурную, кинетическую и термодинамическую активность. Как показывает анализ структурной, кинетической, термодинамической и химической активности дисперсных наполнителей, это влияние не может быть всегда однозначно охарактеризовано даже для одной сравнительно простой системы полимер-наполнитель. Эта неоднозначность объективно связана с физическими и химическими характеристиками наполнителя и многофакторностью его влияния на свойства и структуру полимера на различных уровнях, а также свойств самого полимера на процессы взаимодействия с наполнителем. [c.103]

    В системах, содержаишх равновесные растворы, наблюдаемая электродвижущая сила, измеренная с помощью, например, потенциометра, определяющаяся молярными или парциальными молярными свободными энергиями веществ, участвующих в равновесии, оказывается (см, гл- VI) связанной определенным образом с их активностями. Наоборот, связь между активностью и концентрациями не может быть установлена термодинамически и должна быть определена хШическим анализом равновесной системы. В некоторых простых случаях можно обойтись без химического анализа и выразить активности непосредственно через концентрации. Множитель, связывающий концентрацию компонента с его активностью, называют. коэфициентом активности . Численное значение коэфициента активности будет зависеть от применяемых единиц концентрации и от выбора стандартного состояния. Для неводных растворов стандартные состояния растворенного вещества и растворителя выбираются обычно так, чтобы в бесконечно разбавленном растворе активность каждого компонента становилась равной его молярной доле, а коэфициент активности — единице. Удобной мерой активности растворителя, создающего над раствором измеримое давление пара, является отношение этого давления к давлению пара чистого растворителя. [c.71]

    Методы анализа без предварительного разделения смеси (in situ) веществ, близких по химическим и физическим свойствам, можно подразделить на два основных класса термодинамические и кинетические методы — в зависимости от способа устранения (или ослабления) влияния других компонентов смеси. В термодинамических методах для системы подбираются такие равновесные условия, при которых все реакции, кроме интересующей нас, становятся термодинамически невыгодными. В кинетических методах анализа используется различие в скоростях взаимодействия компонентов смеси с каким-либо реагентом с тем, чтобы выделить из остальных реакций только одну, связанную с определяемым компонентом. [c.9]

    Структурный подход облегчает также термодинамический анализ неравновесных систем. Задачей термодинамики является описание структурных особенностей системы с помощью макроскопических переменных. К сожалению, классическая термодинамика рассматривает почти исключительно равновесные состояния она лишь в очень малой степени касается неравновесных систем. Неравновесная термодинамика, развитая Онзаге-ром [1], Пригожиным [2] и др., вводит в классическую термодинамику дополнительные аксиомы, чтобы дать более строгое и более удобное описание неравновесных систем. Эти аксиомы приводят, однако, к такому выражению для движущей силы химических реакций, которое не согласуется с опытом и которое применимо как приближение только при небольших отклонениях от равновесия. Способ, позволяющий избежать эти затруднения, описан в разделе УП. [c.69]

    В классической форме задачей физико-химического анализа является изучение термодинамического состояния физико-хими-ческих систем и построение диаграмм термодинамического их состояния или, просто, диаграмм состояния. Представление о физико-химических системах с помощью метода физико-химического анализа сводится, следовательно, к определенным геометрическим образам, отражаюпщм существование в них отдельных фаз и их превращения. Применение геометрии в физико-химическом анализе, по мнению Н. С. Курнакова, равноценно применению математики. Геометрический метод дает наглядное пред-став.чение и устанавливает строгие количественные соотношения между отдельными элементами диаграмм состояния. [c.12]


Смотреть страницы где упоминается термин Термодинамический анализ химических систем: [c.6]    [c.337]    [c.2]    [c.261]    [c.124]    [c.86]    [c.274]    [c.201]   
Смотреть главы в:

Физико-химические основы неорганической технологии -> Термодинамический анализ химических систем




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Система термодинамическая

Система химический анализ

Системы анализ



© 2024 chem21.info Реклама на сайте