Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температурный коэффициент в фотосинтезе

    Величина температурного коэффициента фотосинтеза зависит также от интенсивности света. В пределах одних температурных условий фотосинтеза выше при высокой интенсивности света, [c.13]

    Одним из основных путей в решении проблемы о наличии в процессе фотосинтеза темновых реакций было изучение зависимости фотосинтеза от внешних факторов среды - от света и температур . Известно, что отношение фотохимических и химических реакций к интенсивности света и температуре,различны. Химические реакции от света не зависят, иовышение же температуры ускоряет протекание этих реакций. Температурный коэффициент QJ.Q для химических реакций равен 2-3. [c.10]


    Температурный коэффициент ( 01 о) фотосинтеза при разных температурах [c.13]

    Проведенные после Блэкмана многочисленные наблюдения показывают, что при благоприятных условиях температурный коэффициент (Сю) процесса фотосинтеза достигает нередко 2 и выше 2. Существование в цепи процессов фотосинтеза чисто химических звеньев и является причиной того, что низкие температуры снижают фотосинтетическую активность растения даже в условиях интенсивного освещения. Крайне неустойчив фотосинтез и по отношению к веществам, ингибирующим дыхание (эфир, фенилуретан, цианиды), причем полное подавление фотосинтеза имеет место при применении ядов в таких концентрациях, которые не только не оказывают влияния на пигменты хлоропластов, но оставляют нетронутым и дыхание тех же листьев. [c.141]

    Если судить по температурному коэффициенту, наиболее благоприятны для фотосинтеза температуры в пределах 25° С (табл.17). [c.188]

    Температурный коэффициент (Сю) фотосинтеза у некоторых растений [c.188]

    Ингибирование суммарного фотосинтеза кислородом открыто еще в 1920 г. Варбургом [1950]. Фото дыхание ослабляется также с увеличением давления СОа. Для фотодыхания характерен высокий температурный коэффициент, и поэтому оно имеет особое значение в областях с теплым климатом, [c.219]

    Другой пример. Температурный коэффициент Сю скорости фотосинтеза на интенсивном свету равен 2,5, а на слабом — 1,2. В первом случае скорость суммарного процесса лимитируется темновой (биохимической), во втором — фотохимической стадией, термически не активируемой. [c.371]

    Другим доказательством существования темновой фазы фотосинтеза является величина его температурного коэффициента б 10, показывающего, во сколько раз увеличивается скорость реакции при повышении температуры на 10 °С. Для химических, в том числе энзиматических процессов, Q составляет от 2 до 4, для фотохимических, не зависящих от температуры,— он близок к единице. Для интенсивности фото- [c.64]

    Результаты такой экстраполяции к экстремальным точкам могут подсказать новые идеи, нуждающиеся в экспериментальной проверке (однако их следует принимать с чрезвычайной осторожностью). Получив аналогичные данные по дыханию листьев, подтверждающие его выводы для ассимиляции (эти данные опубликованы не были), Блэкман выдвинул предположение, что при соответствующих изменениях температурных и временных коэффициентов примененная схема, возможно, окажется пригодной для описания температурной зависимости самых разнообразных метаболических процессов . Он утверждал, что для фотосинтеза эта зависимость действительно экспоненциальна, причем Qlo равен приблизительно 2 однако при температуре выше 25° С вступает в силу фактор времени , действие которого сказывается тем сильнее, чем выше температура. По предположению Блэкмана, это происходит вследствие повреждающего эффекта, который при не слишком продолжительном воздействии обратим, так что система может вернуться в исходное состояние, если экспозиция не была слишком длительной. [c.199]


    К цианиду, чем клетки с нормальным содержанием хлорофилла. На основании этого наблюдения Эмерсон делает вывод, что уменьшение концентрации хлорофилла понижает способность hlorella к энзиматической реакции. Вместе с остальными наблюдениями (например, температурный коэффициент фотосинтеза в клетках с хлорофильным дефицитом) эти данные указывают па участие хлорофилла в нефотохимической каталитической реакции фотосинтеза. Однако питательные растворы с дефицитом железа, которыми автор пользовался для выраш ивания клеток с уменьшенным содержанием хлорофилла, могли понизить содержание и других катализаторов, чувствительных к цианиду. [c.314]

    Сравнивая выражения (27.1) и (27.2), видим, чп) теоретическое выражение (27.2), полученное на основании механизма реакции, полностью совпадает с эмпирическим выражением (27.1). Это совпадение служит веским доводом в пользу того, что приведенный выше механиим рс акции представляет собой истинный механизм фотосинтеза бромистого водорода. Из (27.1) и (27.2), в частности, следует д = 2kiiYk ,. Так как константа k , слабо зависит от температуры, то температурный коэффициент рассматриваемой реакции должен определяться в основном зависимостью от температуры константы f j. Подставляя в выражение для температурного коэффициента его эмпирическое значение 1,48 и среднее значение температуры 2 = 462 К, находим, что энергия активации процесса (1) Еу 16,6 ккал. [c.170]

    Крэйг и Трелиз [26] производили измерения в различных водных смесях, широко варьируя температуру, интенсивность освещения и концентрацию двуокиси углерода. Оказалось, что фотосинтез несколько ослабевает с возрастанием концентрации окиси дейтерия анализ показал, что три рода воды (HgO, HDO и DgO) участвует в фотосинтезе независимо друг от друга. Влияние окиси дейтерия наиболее сильно сказывается при высоких интенсивностях света и исчезает на слабом свету (фиг. 38). Тяжелая вода не влияет на температурный коэффициент ниже 30°, но он изменяется в области 30—46° максимальная скорость достигается при 35° в обычной воде, при 39°—в тяжелой. [c.305]

    Миллер и Барр обнаружили довольно неожиданное явление, установив, что углекислотный компенсационный пункт не зависит от температуры. Световой компенсационный пункт, напротив, сильно от нее зависит (см. гл. XXVIII). Это различие объясняется тем, что температура заметно влияет на дыхание, а также на фотосинтез при сильном освещении и оказывает лишь слабое влияние (или совсем никакого) на фотосинтез при малых интенсивностях света (см. гл. XXIX и XXX). При измерении светового компенсационного пункта фотосинтез находится в состоянии светового ограничения и потому не зависит от температуры, тогда как при измерении углекислотного компенсационного пункта он находится в состоянии ограничения двуокисью угт е-рода и потому зависит от температуры. Однако точное совпадение температурных коэффициентов дыхания и фотосинтеза, вытекающее из данных Миллера и Барра, является, вероятно, не более, чем случайностью. [c.315]

    С помощью инфракрасных газоанализаторов было показано, что листья многих видов растений [57, 60, 92, 151, 236, 247, 297, 298] в первые минуты в темноте выбрасывают СО2, т. е. в течение короткого промежутка времени выделяют СО2 со скоростью, значительно превосходящей стационарную скорость темнового дыхания. На фиг. 75 представлены данные для Pelargonium и пшеницы [151]. Видно, что выброс СО2 сильно увеличивается с увеличением интенсивности предварительного освещения. Температура оказывает меньшее влияние, чем можно было ожидать (гл. VII). Температурные коэффициенты (Qio) для скорости дыхания в первые две минуты темноты после освещения в 9670 или 29000 лк составляли всего 1,3—1,4 для пшеницы (за одним исключением) и 1,2—1,6 для Pelargonium, тогда как для стационарного темнового дыхания средние значения Qio были равны соответственно 2,7 и 2,3. Значения Qio для выброса СО2 были, как правило, меньше, чем относительное увеличение Г при повышении температуры на 10° С. Между тем, по мнению Хита и Орчарда [151], величина Г должна расти с температурой медленнее, чем выделение СО2, так как в условиях сильного лимитирования по СО2 Qio для фотосинтеза больше единицы. Кроме того, при данной температуре значение Г должно быть приблизительно пропорциональным скорости выделения СО2. Однако зависимость величины Г от интенсивности света (фиг. 93) и от концентрации кислорода иная, чем та, которая наблюдается для количества выбрасываемой СО2. Отсюда Хит и Орчард заключают, что вряд ли можно судить о световом дыхании по величине выброса. [c.173]

    Химическое сопротивление, как уже говорилось в гл. IV, является функцией света и температуры. Однако два эти фактора воздействуют на совершенно разные участки фотосинтетической химической системы. Скорости фотохимических реакций, как правило, почти не зависят от температуры общее количество образующихся в таких реакциях продуктов прямо пропорционально количеству поглощенного света, т. е. произведению интенсивности света на время. С другой стороны, скорости обычнык химических реакций (иногда называемых темповыми реакциями, потому что они не зависят от света) заметно изменяются с температурой, увеличиваясь обычно в 2—3 раза при каждом повышении температуры на 10° С (то же справедливо и для реакций, катализируемых ферментами, хотя и в более узких температурных пределах, зависящих от свойств данного фермента). Это отношение (отношение скорости при (0°+1О°) к скорости при 0°) называется температурным коэффициентом и обозначается через Ою- Отметим попутно, что Рю для таких физических процессов, как диффузия, равен приблизительно 1,1. Для фотохимических реакций, которые от температуры не зависят, Qio равен 1,0. Таким образом, величина Сю дает ключ к распознаванию типа исследуемого процесса, но только при условии, если у нас есть уверенность в том, что полученная в результате измерении величина не является усредненным значением Qlo для ряда процессов различных типов. При измерении скорости фотосинтеза -такое затруднение может встретиться. Обойти его удается в том случае, если сопротивление какой-либо из стадий процесса настолько велико по сравнению с сопротивлениями других стадий, что именно оно главным образом и лимитирует скорость всего процесса в целом. [c.195]


    Влияние температуры на фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (( ш=1)- Это связано с тем, что при низкой освещенности интенсивность фотосиптеза лимитируется скоростью световых фотохимических реакций. Напротив, при высокой освещенности скорость фотосинтеза определяется протеканием темновых реакций, и в этом случае влияние температуры проявляется очень отчетливо. Температурный коэффициент ( ю может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза. Температурные пределы, в которых возможно осуществление процессов фотосинтеза, различны для разных растений. Минимальная температура для фотосинтеза растений средней полосы около 0°С, для тропических растений 5—10°С. Имеются данные, что полярные растения могут осуществлять фотосинтез и при температуре ниже О С. Оптимальная температура фотосинтеза для большинства растений составляет примерно 30—33 С. При температуре выше 30—33°С интенсивность фотосинтеза резко падает. Это связано с тем, что зависимость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темвовых реакций фотосинтеза. [c.144]

    Описание данных по качеству воды. Модуль качества воды WQ включает в себя четыре информационные компоненты. Первая группа данных получается в результате решения гидродинамической модели речной системы (модуль ПВ), поэтому модуль WQ всегда запускаются после модуля НВ. Для определения параметров несупдего потока используются полученные в НВ расходы и скорости как функции от времени для всех расчетных точек. Вторая группа данных содержит информацию о конвективной диффузии. Здесь перечисляются наименования компонент, единицы измерения концентрации для них, коэффициенты дисперсии (диффузия), начальные условия, коэффициенты распада (неконсервативности) несуш,его потока, открытые и закрытые граничные условия. Третья группа данных содержит информацию о граничных условиях для каждого загрязнителя (граничное условие и привязка к руслу речной системы). Четвертая группа описывает процессы взаимодействия биологически активных веш,еств (БПК, нитраты, аммоний) с кислородом. В этих данных указываются основные параметры этого взаимодействия с окружаюш,ей средой и свойства несуш,его потока реки (тепловая радиация, реаэрация, респирация, фотосинтез, температурные процессы и т.д.). Только наличие всех четырех типов данных позволяет произвести корректный расчет качества воды в речной системе. [c.316]


Смотреть страницы где упоминается термин Температурный коэффициент в фотосинтезе: [c.70]   
Курс физиологии растений Издание 3 (1971) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент температурный

Фотосинтез



© 2025 chem21.info Реклама на сайте