Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания электронных факторов на силу

    Сила основания определяется стабильностью образующегося катиона (сопряженной кислоты). Чем стабильней катион, тем сильнее основание. Стабильность катиона определяется суммой тех же факторов, что и стабильность аниона, с той лишь разницей, что влияние этих факторов на основность противоположно тому влиянию, которое они оказывали на кислотность. Например, наличие в углеводородном радикале электронодонорных заместителей будет способствовать стабилизации катиона и, следовательно, повышать силу основания. Напротив, электроноакцетхзрные заместители будут дестабилизировать катион и уменьшать основность соединения. Исходя из природы атомов кислорода, азота и серы, можно сделать вывод, что наиболее электроотрицательный атом кислорода за счет более прочного удерживания неподеленной пары электронов менее склонен присоединять протон по сравнению, например, с атомом азота. Действительно, амины обычно более сильные основания, чем спирты. Электроны атомов азота и серы менее прочно удерживаются ядром и более доступны для связи с протоном. Однако у атома серы электронная плотность рассредоточена в большем объеме по сравнению с атомом азота и кислорода. Плотность заряда становится меньшей и атом серы слабее связывает протон. Поэтому тиолы более слабые основания, чем амины и спирты. [c.159]


    При оценке возможностей электронной микроскопии в определении глобулярной структуры гелей следует иметь в виду ряд ограничений метода. На ограниченные возможности определения формы и размеров частиц в связи с разрешающей способностью микроскопов будет указано далее (стр. 159). Впрочем, быстрый прогресс в области приборостроения и техники препарирования в электронной микроскопии позволяет надеяться, что в скором времени достигнутые пределы будут сдвинуты. Далее, электронно-микроскопическая методика не позволяет пока что оценить степени срастания частиц в гелях. В цитированных выше работах принималось, что частицы контактируют в точке. Это является идеализацией, особенно для гелей с плотной упаковкой частиц, к числу которых, вероятно, относятся тонкопористые силикагели. При сильном срастании частицы могут потерять индивидуальность и уже не будет оснований говорить о теле глобулярного строения. С другой стороны, электронный микроскоп не в силах обнаружить возможную шероховатость частиц молекулярного масштаба. Оба эти фактора — срастание частиц и их микрошероховатость — влияют в противоположных направлениях на величину полной удельной поверхности тела по сравнению с геометрической поверхностью, определяемой при помощи электронного микроскопа па основании схемы о совокупности контактирующих в точке частиц с гладкой поверхностью. Другими словами, уменьшение удельной поверхности реального тела за счет срастания его частиц в какой-то степени может компенсироваться их микрошероховатостью. Поэтому из факта близкого соответствия величин удельных поверхностей глобулярных тел, вычисленных адсорбционным и электронно-микроскопическим методами, выводить заключение о непористости образующих их частиц можно лишь с известной осторожностью. [c.152]

    Здесь и далее под силой кислот и оснований подразумеваются соответственно их относительная протонодонорная (Р ) и электроно-донорная ( ) способности к ВС [24], существенно отличные от силы тех же соединений в процессах ионизации. Разумеется, мы не опираемся на порождающее упомянутые Р-, /-шкалы эмпирическое правило факторов  [c.114]

    Общая ошибка всех этих исследователей в настоящее время совершенно очевидна — они не замечали того, что сродство характеризуется не только количественным фактором, но и фактором интенсивности. Поэтому, когда на основании термохимических измерений они приходили к выводу, что силы сродства (фактор интенсивности) всех элементов различны, они толковали этот факт как признак того, что валентности (количественный фактор) не могут быть одинаковыми, будучи чуть больше или чуть меньше небольших целых чисел, обычно служащих для их выражения. Однако поскольку законы электролиза Фарадея были этим исследователям известны, такое смешение понятий кажется нам несколько удивительным, Повидимому, так получалось потому, что в пределах их знаний все силы, способные к действию на расстоянии, как, например, электростатическое или магнитное притяжение, вели себя так, как если бы они распределялись равномерно по всей поверхности материи, несущей эти силы, а не оказывали такого действия, как если бы они были сконцентрированы в немногих определенных точках, тогда как современная электронная теория и квантовая теория рассматривают последнее как аксиому. Если же стать на их точку зрения, то совсем не будет казаться невероятным, что когда один атом подвергается действию силы сродства другого атома, то в образование валентной связи будут вовлекаться различные количества такого излучаемого сродства, и в результате будут оставаться свободными различные количества остаточного сродства. На такую точку зрения встал Вернер [18], развивая свою теорию химического сродства, впервые опубликованную в 1891 г. [c.20]


    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    Многие обычные кислоты содержат Н, связанный с атомом кислорода. Кислотность таких кислот зависит от многих факторов, в том числе деталей их строения, наличия заряда и влияния растворителя. Тем не менее можно сделать некоторые общие заключения, основанные на ослаблении связи Н — О в зависимости от природы атома или группы, связанных с О. В общем случае кислота тем сильнее, чем больше способность такого атома оттягивать электроны. По этой причине элементы, расположенные в правой части периодической таблицы (более электроотрицательные), при прочих равных условиях образуют более сильные кислородные кислоты. Вообще кислородные кислоты данного элемента тем сильнее, чем выше степень окисления элемента в кислоте. Но, поскольку строение кислородных кислот одного элемента при изменении степени окисления обычно меняется, это правило лучше других сформулировал Белл, указавший, что для кислот общей формулы ХОп(ОН)т сила [c.174]

    Во многих случаях факторы, вызывающие изменения в положении равновесия реакции, не могут быть определены экспериментально. Однако при изучении структурных изменений в связи с кислотно-основным равновесием удалось установить, что смещение электронного облака и образование диполя также может вызвать изменение в потенциальной энергии. Трудно ожидать, что теория, принимающая во внимание только молекулярную структуру кислот и оснований, позволит всегда решить в любом и каждом случае проблему силы кислот или оснований боз учета природы растворителя. Весьма трудно установить единую закономерность для органических соединений, поэтому связь между молекулярной структурой и кислотностью и основностью будет продемонстрирована на некоторых характерных примерах. [c.73]

    Для 5 дг2-реакций можно вьщелить несколько основных факторов, определяющих нуклеофильность реагента. К ним относятся I) поляризуемость, 2) основность, 3) электроотрицательность атакующего атома, 4) энергия сольватации основания Льюиса, 5) сила его связи с 2/>-орбиталью углерода, 6) эффективный объем нуклеофила. Поляризуемость нуклеофила зависит от того, насколько легко его электронная оболочка деформируется при воздействии внешнего электромагнитного поля. Поляризуемость, как правило, возрастает сверху вниз в одной и той же группе Периодической системы, например Г > Вг > СГ > F liSe" > [c.150]

    На силу кислот и оснований могут оказывать влияние различные электронные факторы, часто действующие совлшстно. [c.88]

    Энергию кристаллической решетки можно вычислить на основании учета зарядов ионов, расстояний между ними, числа и расположения ионов в элементарной ячейке, отталкивания электронных оболочек и других факторов, в частности вандерваальсовых сил. (Энергии решетки некоторых ионных кристаллов приведены в табл. 8.2.) [c.181]

    С = и [93, 94]. Природа сил, обеспечивающих стэкинг-взаимодействие, различна. Отчасти, стэкинг обусловлен взаимодействием между индуцированными диполями, образованными тс-электронами оснований. При исследовании димеризации кофеина в воде показано [95], что она имеет характер, типичный для комплексов с переносом заряда, а димер af является слабо п-связанным молекулярным комплексом. Кроме того, эти структуры наиболее стабильны в водных растворах, что указывает на важную роль гидрофобных взаимодействий в стабилизации стопкообразных структур. Известно, что стэкинг представляет собой сильно экзотермический процесс (AS < 0,1Д// > TAS). В то же время, гидрофобные взаимодействия являются эндотермическими и, следовательно, определяются энтропией (Д5 > 0). Поэтому нельзя безоговорочно утверждать, что гидрофобные взаимодействия являются главными силами, обеспечивающими стэкинг нуклеиновых оснований в воде. Такие выводы базируются, главным образом, на положительных значениях энтальпии и энтропии, сопутствующих гидрофобным эффектам, а также на нулевом изменении теплоемкости при переносе оснований из органических сред в воду. Однако, это не означает, что полученные в настоящее время экспериментальные результаты однозначно исключают любое участие гидрофобных эффектов в стэкинг-взаимодействиях. Интересный подход к исследованию энергетики стэкинга оснований разработали Синаноглу и Абдулнур [96]. Они развили идею о том, что поверхностное натяжение наряду с другими факторами играет важную роль в образовании стопкообразных структур. Очевидно, что для создания отдельных полостей для каждого основания необходимо совершить больше работы, чем для создания одной большой полости, которая вместит все основания без растворителя между ними. Следовательно, будет наблюдаться тенденция к упаковке оснований в одну полость. Возможно, вода проявляет такую сильную тенденцию к стабилизации стопочных структур из-за того, что она обладает относительно высоким поверхностным натяжением (-72 дин см ) по сравнению, например, с этанолом (22 дин см" ). Разница в энергии, [c.236]


    Малая скорость реакции 8ц2 типа у неопентилбромида бл 16-6), несмотря на принадлежность неопентильного икала к первичному типу, объясняется затруднениями аки реакционного центра нуклеофилом с тьша по отно-ению к атому брома в соответствии с механизмом 5 лг2 акции Это лишний раз подтверждает значение стериче-ких (пространственных) факторов в 5лг2 реакциях Нуклеофшы, нуклеофильность Нуклеофилами явля-ся любые частицы — доноры электронной пары, однако силу этого они являются и основаниями Тем не менее понятия основность и нуклеофильность принято вкла-вать разный смысл Стандартной мерой основности, то есть силы основа-В, является положение равновесия в реакции переноса отона при взаимодействии с водой как кислотой [c.443]

    Как известно, химические вещества состоят из ядер и электронов, а химические силы основаны на электронном взаимодействии. Поэтому электронная теория катализа является прогрессивной. Однако она не рассматривает структурных факторов. Идея о возможности совместного применения мультиплетной и электронной теорий катализа имеет определенный интерес и обсуждалась рядом авторов эта мысль проведена в записке о научных основах подбора катализаторов [74]. По поводу мультиплетной теории аналогичную идею высказал Гарнер [75] (видный представитель электронной теории). Он считает, что нет внутреннего противоречия между интерпретацией, основанной на геометрии, и интерпретацией, основанной на электронном потенциале поверхности. В качестве примера конкретного совместного применения обеих теорий приведем соображения Даудена, Маккензи и Трапнела [76], которые исследовали дейтерообмен водорода на окислах (1956 г.). Согласно этим авторам, дефект решетки обладает четырьмя центрами, которые способны адсор бировать как молекулу Нг, так и молекулу Ог, что является условием каталитической активности. Хемосорбция Нг и Ог на Р-центре окиси цинка, где дефектный ион кислорода заменен двумя электронами, изображена на рис. 6. Тогда усиление п-характера будет вследствие увеличения числа дефектов помогать катализу в согласии с опытом. [c.323]

    Согласно работам Д. Н. Курсанова с сотрудниками [173, 177], в изопарафиновых углеводородах водород не обменивается, если вместо дейтеросерной кислоты взять дейтероуксусную или дейтерофосфорную кислоты. Авторы объяснили это наблюдение тем, что названные кислоты ие обладают окислительным действием. Более вероятно, что при этом играет роль меньшая сила этих кислот [194] (ср. величины функции кислотности io стр. 76). Что касается водородного обмена с серной кислотой, то он тоже зависит от степени кислотности последней. Бик и его соавторы [170] на примере изобутана показали суш,ество-вание линейной зависимости между скоростью обмена и функцией кислотности серной кислоты. По их мнению, фактором, от которого зависит обменная реакция, может быть образование комплекса между очень слабым основанием — изобутаном и сильной кислотой. Ингольд [161, 162] считает, что изотопный обмен водорода между дейтеросерной кислотой и углеводородом (безразлично ароматическим или насыш енным) имеет об-1цие закономерности, в частности, легче всего подвержены атаке кислоты участки молекулы с повышенной электронной плотностью. По Ингольду, единственным способом, каким серная кислота может участвовать в реакции изотопного обмена, является отдача протона (или дейтрона). [c.236]

    Различные индексы реакционной способности соответствуют различным моделям переходных состояний и движущих сил реакции, При использовании индексов первой группы исходят иэ предположения о раннем переходном состоянии близком по структуре и положению на энергетическом профиле реакции к исходной молекуле. Индекс свободной валентности ( Рл) является современным видоизменением представлений Тиле об остаточном сродстве (см, разд. 1.1.1). Чем больще степень участия атома в положении г в образовании л-связей с соседними атомами ароматической системы, тем меньше его индекс свободной валентности и способность связываться с атакующим реагентом. Использование я-электронной плотности [дг), рассчитываемой суммированием вкладов всех заполненных МО, адетсватно представлению Об определяющем значении электростатического взаимодействия между субстратом и реагентом, благодаря которому электрофильная атака легче направляется на атомы с наибольшей, а нуклеофильная — с наименьшей электронной плотностью. Индекс собственной поляризуемости Птг отражает легкость изменения суммарной л-электронной плотности на атакуемом атоме под влиянием реагента. Чем больше индекс Ягг атома, тем легче в это положение должны идти реакциь как электрофильного, так и Нуклеофильного замещения. Граничная электронная плотность учитывает распределение электронной плотности только на граничных орбиталях на высшей занятой молекулярной орбитали (ВЗМО) при электрофильном замещении и на низшей свободной молекулярной орбитали (НСМО) после переноса на нее двух электронов при нуклеофильном замещении. Мерой граничной электронной плотности положения является коэффициент Сг , отражающий вклад атомной орбитали атома в положении г в граничную молекулярную орбиталь т. Считают, что электрофильное и нуклеофильное замещения протекают пр месту с наибольшим значением коэффициента Сг на соответствующей граничной орбитали. При свободнорадикальном замещении и ВЗМО, и НСМО рассматриваются как граничные орбитали [366]. Поскольку граничная электронная плотность пригодна только для рассмотрения ориентации в данной молекуле, для выявления относительной реакционной способности различных систем введен индекс, на-,званный срерхделокализуемостью (5г). При формулировке этого-индекса использована теория возмущений [361 ] в применении к модели, в которой вступающая группа образует слабую п связь с атомом в положении г, а я-система в целом не изменяется. К индексам теории граничных орбиталей [366] близки другие индексы, основанные,на представлении о переходном состоянии как комплексе с переносом заряда, например 7-фактор 43]. Обсуждавшиеся в. связи с концепцией одноэлектронного переноса корреляции между относительной реакционной способ- [c.127]

    При переходе от эфиров к сульфидам следует ожидать уменьшения пространственных затруднений благодаря большому размеру атома серы. Различие в порядке основности циклических сульфидов и эфиров можно считать результатом действия ряда факторов. С одной стороны, это силы электронного корреляционного отталкивания неподеленных пар, которые дают вклад в основности четырех- и пятичленных циклов, благодаря экранированию неподеленных пар электронов соседними парами, связывающими атомы водорода ИЗ]. В противоположность этому имеется эффект малых колец , который делает трехчленные имины, окиси и сульфиды очень слабыми основаниями в их группах и, как мы полагаем, непосредственно связан с необычной электронной структурой трехчленных циклов вообще, включая и циклопропан. В ряду циклических простых эфиров фактор электронного корреляционного отталкивания становится настолько сильным в четырехчленном цикле, что он подавляет все другие факторы. Он несколько снижается в пятичленном цикле, исчезает в тетрагидропиране (где экрани- [c.263]

    Когда кислота растворена в растворителе, начальная реакция между кислотой и растворителем зависит в первую очередь от двух факторов от силы кислоты (ее тенденции приобретать пару электронов) и от силы растворителя как основания (его тенденции отдавать пару электронов). Б данном растворителе сила кислоты может быть измерена в пределах нивелирующего эффекта Ганцша (этот эффект будет рассмотрен дальше) при помощи константы равновесия реакции с растворителем. Например, если ледяная уксусная кислота—типичная ковалентная жидкость, которая очень слабо проводит электрический ток, реагирует с водой согласно уравнению [c.62]

    Для двухатомных молекул или радикалов вероятность перехода может быть вычислена теоретически, если известен тип электронного перехода. Волновое число V и энергия определяются на основании анализа спектра. Измеряя интенсивность двух или большего числа линий, можно исключить С и определить температуру. Одно время измеренные этим методом очень высокие значения температуры вызывали сомнения [81]. Однако в дальнейшем было показано [82], что на результаты измерений не повлияла реабсорбция, хотя в принципе она и может привести к искажению результатов, если имеется неоднородное поле температур, например, во внешппх слоях пламени Н2—СоНз—О, нли С2Н2 — О2 — Аг[83]. Установлено [84], что обычное предположение о независимости вращательных и колебательных факторов интенсивности может приводить, вероятно, к ошибкам около 10%. Несмотря на это, общий вывод о том, ято вращательные температуры аномально высоки остается в силе. [c.536]

    Однако на донорно-акцепторные взаимодействия оказьтают влияние не только сила льюисовских кислот и оснований, но также и другие факторы — стерические, электронные и др. Так, даже в системах, в которых обнаруживается лишь только донорное или акцепторное свойство растворителя, особенности пространственного строения растворителя могут приводить к разной степени взаимодействия с растворенным веществом. Или, например, в случае реперного акцептора, способного к дативному л-взаимодействию (обратной координации), последний будет взаимодействовать с л-акцепторнымн молекулами растворителя (например, ацетонитрилом) более сильно, чем можно было бы ожидать на основании его основности. Исследования Бургера и сотр. [18, 19] донорной способности растворителей с использованием комплекса переходного металла в качестве реперного акцептора четко показали большое значение подобных вторичных эффектов, искажающих шкалу растворителей. [c.36]

    Из интерметаллических ближе всего к ионным стоят соединения самых электроположительных металлов (щелочных и щелочноземельных) с наиболее электроотрицательными (элементами четвертой Ь подгруппы 81, Ое, 8п, РЬ). Менее сходные ионными другие группы интерметаллических соединений электронные соединения, фазы, основанные на упаковке разных по размерам атомов, и соединения, обусловленные наличием сил ковалентного типа. Они значительно чаще дают свои своеобразные структурные типы. Таковы, например, т-фазы в группе электронных соединений, фазы Лавеса в группе соединений, обусловленных объемными факторами, т-СиА12 — тип в группе соединений с частично ковалентными связями и т. д. [c.206]

    Во-вторых, имеются некоторые основания предполагать, что энергия связи определяется большим число факторов, чем только одно электростатическое притяжение между центральными атомами Е и Н. Одно из таких оснований связано со сравнением силы связей Н...Е, имеющихся в ассоциированных молекулах Е — Н...Е — Н(Е и Е — О, N или Р), с дипольными моментами Е — Н при этом не найдено простой корреляции энергии с дипольным моментом, которую можно было бы ожидать. По-видимому, существует еще три типа сил, из которых две стабилизируют связь, а третья — ослабляет. Сила отталкивания возникает из-за наличия двух электроотрицательных атомов, взаимодействующих с одним и тем же атомом водорода чем больше они сближаются в пределах равновесных расстояний, тем сильнее результирующее отталкивание. К силам притяжения относятся силы ван-дерваальсова типа (гл. 6, разд. 2) и силы, возникающие благодаря делокали-зации заряда. Эта делокализация в основном затрагивает обычный электронный заряд связи Е — Ни неноделенную пару атома, с которым образуется Н-связь. Детально эффект делокализации еще не изучен, так же как не ясен относительный вклад каждого из этих трех типов сил, но даже имеющиеся сейчас данные о связи, которую именуют то водородной связью, то водородным мостиком, то протонным мостиком, позволяют удовлетворительно объяснить ряд интересных свойств различных соединений, и ниже мы еще будем возвращаться к этому вопросу. [c.106]


Смотреть страницы где упоминается термин Основания электронных факторов на силу: [c.768]    [c.163]    [c.163]    [c.414]    [c.414]    [c.27]    [c.526]    [c.598]    [c.9]    [c.199]    [c.762]    [c.434]    [c.37]   
Принципы органического синтеза (1962) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Основания сила

Фактор фактор электрона

электроны как основание



© 2025 chem21.info Реклама на сайте