Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Специфичность ферментов, анализ методов исследования

    Поразительная специфичность действия ферментов привела к созданию теории замка и ключа, согласно которой для протекания реакции необходимо точное структурное соответствие между субстратом и активным центром фермента. Проведенные эксперименты убедительно доказали адекватность этой идеи, однако сама теория претерпела существенное изменение. Считается, что если фермент — это замок , а субстрат — ключ , то введение ключа в замок часто индуцирует конформационные изменения в молекуле белка. Имеется множество работ, в которых показано, что фермент укладывается вокруг субстрата, обеспечивая более точное соответствие подгоняемых структур. В пользу этого говорят данные по изменению спектров кругового дихроизма, спектров поглощения в УФ-области и констант седиментации, а также результаты исследования структуры комплексов ферментов с ингибиторами методом рентгеноструктурного анализа. Как мы уже видели ранее (гл. 4, разд. Д, I), идея индуцированного соответствия оказывается весьма плодотворной и при обсуждении взаимодействий субъединиц. [c.42]


    Биохимические метйды, используемые в стандартизации и контроле качества лекарств. Для стандартизации и контроля качества лекарств используют три группы методов. 1. Физические методы — спектрофотометрия, флюоресцентный анализ, масс-спектрометрия и др. 2. Химические методы неорганического, коллоидного и органического анализа состава лекарств и их метаболитов. Эти группы физико-химических методов позволяют установить структуру вещества и лишь сделать предположение о его биологической активности. 3. Биохимические исследования с использованием субклеточных фракций, клеток, тканей, органов и организмов позволяют оценить биологическую активность лекарств. Применение биохимических методов обеспечивает стандартизацию лекарств и контроль качества на этапах производства и хранения. Широкое распространение получило использование свойства специфического взаимодействия белков в системах фермент—субстрат , лекарство—рецептор , антиген-антитело . На основе этого фундаментального свойства белков созданы специфичные и высокоточные методы радиоиммунно-го, иммуноферментного, хемилюминесцентного анализа, аффинной хроматографии и др. [c.478]

    Иммуноферментный анализ, возникший более пятнадцати лет назад на пересечении иммунохимии и инженерной энзимо-логии, стал в настоящее время одним из распространенных методов исследования. Явные преимущества нового метода, к которым относится простота выполнения, доступность и стабильность реагентов, экспрессность и возможность автоматизации для проведения массовых анализов, обеспечили его прочное положение в клинической биохимии, при диагностике заболеваний растений и животных, в научных исследованиях. Благодаря успехам биотехнологии иммуноферментный анализ далее интенсивно развивался, поскольку с помощью генной инженерии были получены в высокоочищенном виде малодоступные антигены, а также ферменты-маркеры и их конъюгаты с антигенами, а с помощью клеточной инженерии — моноклональные антитела с заданной специфичностью и аффинностью. Новые направления развития иммуноферментного анализа связаны с использованием различных методов регуляции ферментативной активности при детектировании комплексов антиген — антитело. Именно этим вопросам и посвящена предлагаемая книга. [c.5]


    Согласно собственным исследованиям автора и анализу литературных источников, стало вполне очевидным, что изменения метаболизма, вызываемые вирусами, специфичны для растения-хозяина. Под влиянием вируса происходит как ингибирование, так и индуцирование синтеза новых изоэнзимов пероксидаз. Но так как фермент в клетках растений представлен большим набором изоэнзимов (от 3 до 42 молекулярных форм) с широким диапазоном ферментативной деятельности, в пределах pH от 3 до 14, то изучение этого фермента весьма сложно. Сведений о каталитической активности каждого из изоэнзимов пероксидазы в реакциях метаболизма разных растительных организмов весьма недостаточно. Тем более практически нет таких сведений об изменении каталитических свойств индивидуальных изопероксидаз. в вирозных растениях. Физикохимическая характеристика пероксидаз, выделенных из зараженных вирусами и контрольных растений табака, свидетельствует об определенных различиях между ними [Воронова и др., 1981]. Применение хроматографических методов исследований позволило выделить два белка с пероксидазной активностью и изучить некоторые каталитические свойства их в опыте и контроле [Андреева и др., 1979 Андреева, 1981]. Это дало возможность получить новую информацию об активности изопероксидаз вирозных растений. [c.5]

    Наряду с применением микрохимических методов анализа, цветных реакций и физических методов исследования большую роль в этом играет также разработанный за последние годы ферментативный метод анализа, отличающийся чувствительностью, точностью и специфичностью. Основой для аналитического использования оксистероид-дегидрогеназ послужила разработка методов их выделения и очистки в больших количествах, а также установление факторов, влияющих на равновесие катализируемых этими ферментами реакций. В настоящее время для целей анализа стероидов используются За-, Зр,17р- и 20р-окси-стероид-дегидрогеназы, методики применения которых имеют некоторые различия [76]. [c.134]

    Методом рентгеноструктурного анализа было исследовано большое число кристаллических ферментов. Результаты таких исследований часто сопоставляются с данными, полученными химическими методами при 1) определении аминокислотной последовательности ферментов, 2) изучении их субстратной специфичности, 3) исследовании действия специфических ингибиторов и 4) идентификации специфических функциональных групп в активном центре. С целью выявления возможной связи между каталитическим действием ферментов и их третичной структурой были изучены представители большинства основньгх классов ферментов (см. табл. 9-3). Здесь показаны изображения (в масштабе) молекул трех ферментов, иллюстрирующие некоторые их структурные и функциональные особенности, выявленные при рентгеноструктурном анализе кристаллов этих ферментов. [c.250]

    Методом генетического анализа в исследованных немногочисленных случаях было установлено, что система хозяйской специфичности в случае ферментов И типа контролируется двумя (г и т) генами [64, 413]. Также в этих опытах была показана нежизнеспособность щтаммов с генотипом г+Ш [64, 413], что вполне понятно учитывая функцию метилазного компонента в системе двух сопряженных ферментов. На этом же этапе исследований было установлено, что гены ферментов рестрикции-модификации могут быть локализованы на плазмидах [167, 389]. В настоящее время предполагается, что некоторые гены гт расположены в бактериальных хромосомах [180, 194, 306, 350, 363, 389], хотя строго говоря этот вывод экспериментально подтвержден только в случае BsuR I [375]. Имеется пример фаговой локализации генов, контролирующих структуру ферментов RME oP 1, относящихся к 111-ему типу [184, 351]. В от- [c.100]

    Выбор аминокислоты, подлежащей замене, как правило, производится с учетом ее роли в функционировании белка. Данные об этом получают в ходе генетических исследований или методом рентгеноструктурного анализа трехмерной структуры белка. Изменяя специфические сайты или целые участки белковой молекулы, можно повысить термостабильность белка, изменить его чувствительность к pH, специфичность, аллостерическую регуляцию, потребность в кофакторе и другие свойства. Так, термостабильность триозо-фосфатиозомеразы удалось повысить, заменив аминокислоты в двух позициях. Этот подход можно использовать как для придания новых свойств уже существующим белкам, так и для создания уникальных ферментов. [c.175]

    Такие направленные изменения в белках (белковая инженерия) стали важным инструментом для установления роли отдельных аминокислотных остатков в формировании пространственной структуры белка и выполнении им своих функций. В качестве примера можно привести результаты исследования роли остатка тирозина-248, входящего в активный центр карбоксипептидазы А (см. 6.1). После установления пространственной структуры этого фермента с помощью рентгеноструктурного анализа высказывалась точка зрения, что гидроксигруппа этого остатка принимает участие в подаче протона на атом азота гидролизуемой пептидной связи и одновременно в удалении протона от молекулы атакующей воды. Однако, когда методом сайт-специфичного мутагенеза была осуществлена замена этого остатка тирозина на фенилаланин, оказалось, что каталитичесюш свойства фермента практически не изменились. Таким образом, роль гидроксигруппы тирозина-248 в катализе не подтвердилась. [c.306]


    Карбоксипептидазы А и В образуются при гидролизе трипсином соответствующих прокарбоксипептидазных предшественников, синтезируемых в поджелудочной железе [187J. Из этих двух ферментов более подробно изучена карбоксипептидаза А, и проведено ее детальное исследование методом рентгеноструктурного анализа [29, 188, 189]. Карбоксипептидаза А быка (КПА) представляет собой фермент, содержащий 307 аминокислот в единственной полипептидной цепи, которая прочно связывает 1 г-ион Zn(II) на 1 моль фермента. Необходимость Zn(ll) для ферментативной активности была впервые продемонстрирована тем, что КПА, свободная от иона металла, неактивна, но активность восстанавливается при добавлении Zn(II) [190, 191]. По-видимому, фермент, не содержащий металла, в основном сохраняет структурные свойства активной КПА [191]. Позже на основе данных рентгеноструктурного анализа [29] было четко установлено, что роль иона Zn(ll) при гидролизе пептидов заключается в связывании субстрата. При протеолизе фермент проявляет стереохимическую специфичность, отщепляя С-конце-вую аминокислоту от пептидной цепи только в том случае, если С-концевая карбоксильная группа свободна и если аминокислота имеет L-конфигурацию [192, 193]. Обычно наблюдается более высокая активность, если остаток С-концевой аминокислоты содержит ароматическую группу или разветвленную цепь [194]. [c.76]

    Это стало возможным благодаря успехам, достигнутым в исследованиях механизма действия и структуры этих биокатализаторсгв. В настоящее время ферменты высокой степени чистоты поступают в распоряжение аналитиков во все возрастающем количестве и применяются для проведения реакций in vitro, используемых в анализе. Преимущества аналитического применения ферментов заключаются в их высокой функциональной специфичности и чувствительности. Способность ферментов специфически взаимодействовать с отдельными веществами в различных смесях исключает, в большинстве случаев, продолжительные операции предварительного разделения смесей и сокращает время анализа. Каталитическое действие ферментов и высокое число оборотов при разложении субстрата позволяют достигать чувствительности, значительно превосходящей чувствительность обычных химических аналитических методов. [c.158]


Смотреть страницы где упоминается термин Специфичность ферментов, анализ методов исследования: [c.138]    [c.401]    [c.179]    [c.175]    [c.20]    [c.298]   
Ферменты Т.3 (1982) -- [ c.45 , c.331 , c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ специфичность

Методы анализа специфичность



© 2025 chem21.info Реклама на сайте