Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки пространственной структуры

    Каждому белку присущи строго определенная последовательность аминокислот в полипептидной цепи и определенная пространственная структура. В связи с этим у белков различают четыре уровня структурной организации первичная структура соответствует последовательности остатков аминокислот в полипептидной цепи вторичная структура — расположению полипептидной цепи в пространстве при закручивании ее в спираль за счет водородных связей между группами СО и ЫН разных участков цепи третичная структура определяет, каким образом сворачиваются полипептидные цепи в клубки (субъединицы) путем образования связей, ионов с участием свободных амино- и карбоксигрупп на взаимо- [c.310]


    На рис. 15.15 приведена структура протеолитического фермента карбоксипептидазы А. Полипептидная цепь этого фермента образована 307 аминокислотными остатками и содержит один ион цинка. В цепи имеется несколько а-спиральных участков, а также несколько искривленных участков складчатого слоя (около центра молекулы). Каталитически активный центр фермента расположен рядом с атомом цинка. Пространственная структура части молекулы лизоцима (этот фермент, обнаруженный в слезах и яичном белке, защищает организм от инфекций, гидролизуя полисахариды клеточных стенок бактерий) вместе с [c.445]

    Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например за счет пирроли-диновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориен- тируются в пространстве, принимая в некоторых случаях достаточно [c.373]

    Для более глубокого понимания законов образования третичной структуры следует подчеркнуть, что полипептидная цепь не свертывается произвольно с образованием хаотичного (статистического) клубка. Анфинсен с сотр. [14] показал, что пространственная структура белков задана их первичной структурой. Иными словами, последовательность аминокислотных остатков в полимерной цепи кодирует строго определенный тип вторичной, третичной и высших структур белка. [c.12]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]


    Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы. Это впервые удалось сделать М. Перутцу в 1954 г, что явилось предпосылкой Д 1я построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь, В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина а-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около [c.43]

    С пространственным упорядочением молекулы белка связано и представление о денатурации белков. Под этим понимают разрушение пространственной структуры в результате действия физических или химических факторов (нагревание, облучение, действие кислот и т. д.). Иногда процесс денатурации [c.193]

    Для изучения пространственной структуры белка используют раз-личные физико-химические методы, из которых наиболее эффективен рентгеноструктурный метод. [c.377]

    Водородные. связи имеют огромное значение для организации пространственной структуры белков и нуклеиновых кислот. Как известно, белки представляют собой полимеры, построенные из а-аминокислот, соединенных пептидной связью  [c.108]

    В разделе 2 этой главы мы достаточно подробно останавливались на конформации моделей дипептидов именно потому, что их конформационные карты дают возможность проанализировать двугранные углы в глобулярных белках, пространственная структура которых определена методом рентгеноструктурного анализа. По- [c.386]

    Большая часть рассмотренных физических методов основана на заранее вводимых предположениях относительно геометрии макромолекул, а также степени их компактности, что говорит о некоторой неопределенности, свойственной этим методам. Во многих случаях, как это показывают данные рентгеноструктурного анализа и электронной микроскопии, макромолекулы имеют форму, не укладывающуюся в такие стандарты, как сфера, эллипсоид или вытянутый цилиндр, которые служат удобными расчетными моделями. Молекулы белков, пространственная структура которых точно известна, характеризуются множеством углублений и щелей на поверхности. Если по мере движения молекул в растворе в эти щели затекает растворитель, 10 гидродинамические характеристики молекул будут уже не [c.448]

    И нынешняя его слава тут ни при чем. Это теперь о нем говорят много, чаще всего почтительно и, может быть, в один прекрасный день он встанет в один ряд с Резерфордом и Бором. Но ничего подобного еще не было в те дни, когда осенью 1951 года я пришел в Кавендишскую лабораторию Кембриджского университета и присоединился к маленькой группе физиков и химиков, изучавших пространственную структуру молекул белков. Крику тогда уже было тридцать пять лет, и тем не менее он был почти никому неизвестен. Хотя товарищи по работе признавали за ним цепкий и проницательный ум и часто обращались к нему за советами, его нередко недооценивали, а многие считали, что он чересчур говорлив. [c.13]

    Меня же все больше увлекала пространственная структура молекул. Я думал может, наподобие того, как Полинг сконструировал свою а-спираль для белка, и мне удастся соорудить нечто похожее для гена, то есть для ДНК. [c.137]

    Молекулярная структура полимера определяется составом и геометрическим расположением атомов, входящих в его элементарное звено, очередностью появления тех или иных заместителей у атомов основного скелета макромолекулы. В молекулах белков такая структура называется первичной. В зависимости от взаимного пространственного расположения атомов скелета макромолекулы, в молекулярной структуре полимеров различают линейные, разветвленные, лестничные и пространственные полимеры (рис. 31.1). [c.614]

    К настоящему времени идентифицировано около двух тысяч ферментов. Из них многие выделены в виде чистых гомогенных препаратов и свыше 150 получены в кристаллическом виде. Оказалось, что ферменты состоят либо целиком, либо в основном из белков, т. е. являются полимерами, образованными из аминокислот и имеющими определенную пространственную структуру полипептидных цепей. В состав небелковой части фермента могут входить ионы металлов и некоторые органические вещества. Если последние обладают каталитической активностью, входя в активный центр фермента, то их называют коферментами. Например, в состав окислительных ферментов входят органические соединения железа (так называемый гем). [c.301]


    Третичная структура белка—пространственная конфигурация спирали. [c.650]

    Денатурация — разрушение пространственной структуры биополимера (например, белка), приводящее к утрате и.м биологических свойств. [c.436]

    ЗИ невозможно, и атомы, расположенные непосредственно у пептидной связи, лежат в одной плоскости. Это обстоятельство имеет огромное значение, поскольку принципиально определяет пространственную структуру молекул пептидов и белков. [c.191]

    Потеря первоначальных свойств белков, вызванная изменениями пространственной структуры его молекулы (Рапопорт). [c.209]

    В зависимости от пространственной структуры все белки делятся на два больших класса фибриллярные и глобулярные. [c.374]

    Известно, что свойства белка могут сильно изменяться при замене одной аминокислоты другой. Это объясняется изменением конфигураций пептидных цепей и условий образования пространственной структуры белка, которая в конечном счете определяет его функции в ор ганизме. [c.375]

    Замечательные успехи в синтезе белков, достигнутые в последние годы, стали возможны после того, как Меррифилдом был разработан метод синтеза на твердом носителе. Принцип метода состоит в том, что исходная С-концевая аминокислота связывается ковалентно с нерастворимым полимером пространственной структуры и затем все последовательные стадии синтеза пептидной цепи проводятся на этом носителе. При этом отпадает необходимость выделения на каждой стадии синтеза полученных пептидов, так как они остаются привязанными к носителю, и становится возможным простой промывкой носителя удалять побочные продукты синтеза и непрореагировавшие исходные вещества. [c.381]

    Растворимые в воде белки образуют коллоидные растворы. При нагревании или под действием некоторых реактивов (соли тяжелых металлов) они сворачиваются. При этом происходит денатурация белков — частичное или полное разрушение пространственной структуры белка при сохранении им первичной структуры, например термическая необратимая денатурация яичного белка. [c.311]

    Рентгеноструктурный анализ кристаллов позволил установить полную пространственную структуру ряда глобулярных белков. Было показано, что вторичная структура этих белков представлена главным образом а-спиралью и двумя типами складчатого слоя. При помощи рентгеноструктурного анализа можно установить и положение каталитически активного центра в молекуле фермента, соединенного с ингибитором. [c.443]

    ВТОРИЧНАЯ СТРУКТУРА белка, пространственное расположение атомов гл. цепи молекулы белка на ее отд. участках. Определяется последовательностью аминокислот (см. [c.109]

    III. Структурно-функциональные характеристики белков и РНК, кодируемых генами пространственные структуры, локализация функциональных районов, проекция структурно-функциональных особенностей на первичную структуру  [c.41]

    Белки составляют основу биомембран, важнейшей составной части клетки и клеточных компонентов. Они играют ключевую роль в жизни клетки, составляя как бы материальную основу ее химической деятельности. Исключительное свойство белка — самоорганизация структуры, т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им его функций и миигие другое) связано с белковыми веществами. Без белков невозможно представить себе жизнь. [c.9]

    ТТретичная структура. Спиральные полипептидные цепи жестко фиксируются за счет взаимодействия боковых групп, аминокислот, приобретая специфическую для каждого белка пространственную структуру (конформацию). Это третичная структура белка. В зависимости от расположения полипептидных цепей форма молекул белка может варьировать от фибриллярной (вытянутой, нитеобразной) до глобулярной (округлой). [c.39]

    С помощью дизайна de novo пока удается конструировать элементы вторичной структуры белков или их отдельные домены [9]. Гораздо более успешными оказываются попытки осуществлять рациональный редизайн известных белков, используя в качестве исходных молекул белки и ферменты, функциональность которых уже была апробирована самой природой в живых организмах. Одним из подходов в этом случае является создание новых активных центров в белках, пространственная структура которых хорошо изучена. [c.282]

    Выявление трехмерной структуры миоглобина Джоном Кендрью ]. Кепс1ге у) и гемоглобина Максом Перутцом (М. Реги1г) явилось выдающимся достижением молекулярной биологии. Эти исследования, успешно завершенные в конце 50-х годов, доказали применимость рентгеноструктурного анализа (рентгеноструктурной кристаллографии) для изучения структуры таких макромолекул, как белки. До 1957 г. самой большой из исследованных этим методом молекул был витамин В з, молекулярная масса которого на порядок меньше молекулярной массы миоглобина (17,8 кДа) или гемоглобина (66 кДа). Определение пространственной структуры этих белков послужило огромным стимулом для развития белковой кристаллографии. Проводятся исследования по установлению пространственной структуры большого множества различных белков. Более чем для 50 белков пространственная структура к настоящему времени изучена уже детально. Рентгеноструктурный анализ вносит большой вклад в наши представления о структуре и функции белков, потому что это единственный метод, выявляющий пространственное расположение большинства атомов в белке. Ценным источником информации о структуре биологических макромолекул может служить также электронная микроскопия, однако пока еще она не позволяет выявить [c.50]

    За последние годы в связи с возросшей необходимостью анализа и разделения смесей сложных веществ получила значительное развтие ситовая хроматография (гель-проникающая, гель-фильтра-ционная, молекулярно-ситовая). В качестве подвижной фазы в этом случае используются только жидкости, а неподвижной фазой являются материалы с заданной пористостью, способные избирательно удерживать молекулы веществ с определенными размером и формой. Так, например, в качестве фильтрующих материалов используются сшитые гидрофильные полимеры (гели), обладающие строго регулярной пространственной структурой. При пропускании через гель водных растворов белков или других водорастворимых биологических материалов удается удерживать внутри решетки геля молекулы определенного размера, а более крупные молекулы беспрепятственно вымываются подвижной фазой. При этом компоненты смеси элюируются в порядке уменьшения молекулярной массы. [c.49]

    Именно этим обстоятельством определяется возможность применения дифракции рентгеновского излучения для определения структуры молекул в кристаллах. Кристаллы, построенные из сложных молекул, дают очень сложную картину распределения интенсивностей отдельных рефлексов. Однако по ней можно полностью восстановить расположение отдельных атомов в элементарной ячейке и тем самым установить полную пространственную структуру молекул, из которых построен кристалл. Используя некоторые дополнительные приемы и применяя для расчетов быстродействующие электронно-вы-числительные машины, удается получить пространственную структуру даже таких сложных молекул, как белки и яуклеиновые кислоты. [c.163]

    Ионы хлора образуют решетку, идентичную решетке, образуемой ионами цезия. Поэтому отражения от плоскостей, содержащих ионы хлора, возможны точно под теми же углами, что и от плоскостей, содержащих ионы цезия. В рассматриваемом случае плоскости ионов хлора располагаются точно посередине между плоскостями ионов цезия, и расстояние между этими плоскостями составляет //2. Поэтому волны, отраженные от плоскости ионов хлора, будут смещены по сравнению с волнами, отраженными от соседней плоскости ионов цезия, на величину 51п0. При нечетных п эти волны смещены на половину волны и гасят друг друга. Однако в силу различий в амплитуде колебаний рассеяния (она существенно меньше для менее интенсивно рассеивающих ионов хлора) гашение будет неполное, т. е. рефлексы наблюдаются. При четных п волны, рассеянные от обеих плоскостей, совпадают по фазе, и рассеяние от ионов хлора будет несколько усиливать рассеяние от ионов цезия. Следовательно, рассеяние от системы плоскостей, содержащих грани элементарной ячейки, более интенсивно под углами 22 и 48,52°, чем под тремя остальными углами. Рассеивание от системы плоскостей, содержащих диагонали граней элементарной ячейки, под углом 31,95° существенно сильнее, чем под углами 15,34 и 52,54°. Следовательно, распределение интенсивности между рефлексами содержит информацию о распределении атомов в пределах элементарной ячейки, т. е. о структуре частиц, составляющих ячейку. Именно этим обстоятельством определяется возможность применения дифракции рентгеновского излучения для определения структуры молекул в кристаллах. Кристаллы, построенные из сложных молекул, дают очень сложную картину распределения интенсивностей отдельных рефлексов. Однако по ней можно полностью восстановить расположение отдельных атомов в элементарной ячейке и тем самым установить полную пространственную структуру молекул, из которых построен кристалл. Используя некоторые дополнительные приемы и применяя для расчетов быстродействующие электронно-вычислительные машины, удается получить пространственную структуру даже таких сложных молекул, как белки и нуклеиновые кислоты. [c.185]

    Межмолекулярные водородные связи обусловливают некоторые физические свойства веществ (например, высокую температуру юшсга1Я воды). Внугримолекулярные водородные связи очень важны при образовании пространственной структуры белков. [c.102]

    Наиболее полно и совершенно все перечисленные факторы, обеспечивающие воздействие катализатора на субстраты, используются в биологических катализаторах — ферментах. В настоящее время в результате успешного развития рентгеноструктурного анализа белков установлена полная пространственная структура ряда ферментов и нх комплексов с субстратами. В качестве примера на рисг 87 приведена схема взаимодействия фермента карбоксипепти-дазы с субстратом, [c.324]

    Ферменты — очень сложные органические молекулы, представляющие собой глобулярные белки. Их каталитические центры состоят их ряда атомных групп, природа и взаимное расположение которых в пространстве строго детерминировано, что, собственно, и определяет каталитическую активность фермента, Все структурные и пространственные особенности каталитического центра заданы как последовательностью аминокислотных остатков полипептидной цепи данного белка (первичной структурой), так и упаковкой этой цепи Б фиксированную конформацию белковой глобулы (ее вторичной и третичной структурами Поэтому для химиков нет смысла пытаться построить искусственный структурный аналог такой чудовищно сложной конструкции, добиваясь сходства со свойствами оригинала. Не говоря уже о практически непреодолимых трудностях подобной задачи, она и смысла большого не имеет (если только мы не хотим создать искусственную жизнь). Дело в том, что каждый фермент решает узко специализированную задачу, а эта специализация лишь изредка совпадает с задачами человеческой химии. Смысл всей Проблемы не в этом, а в том, чтобы обеспечить дизайн квазиферментов под реальные задачи (ну, например, расщеплять высшие парафины до низших, т.е. делать бензин из мазута), т. е. не копировать или моделировать живые ферменты, а научится делать ферменте-подобные катализаторы на заказ (не копировать природу, а учиться у нес, воспринять ее методологию, а не результаты )- Кроме того, ферменты как катализаторы для лабораторного или про- [c.477]

    Для понимания механизмов взаимодействия РНК-полимеразы с промоторами и с белками регуляторами важно знать пространственную структуру их комплексов с ДНК. К сожалению, в настоящее время почти ничего не известно о деталя.ч пространственной структуры РНК-полимеразы и. s частности, о структуре.ее участков, азаимодействуюши с ДНК. Приблизительное [c.142]

    Помимо общей регуляции с помощью БАК-сАМР существует индивидуальная регуляция катаболитных оперонов. Классическим примером является негативная регуляция лактозного оперона. В отличие от ранее рассмотренных ди.мерных белков-регуляторов репрессор лактозного оперона представляет собой тетрамер и содержит два идентичных центра связывания ДНК- Пространственная структура этих центров формируется -концевыми участками папи-пептидных цепей, которые, судя по их аминокислотной последовательности, способны образовывать биспиральные элементы, аналогичные биспиральным ДНК> знающим элементам репрессора фага /. и БАК. С-концевые домены субъединиц лактозного репрессора 4юрмирует два центра связывания индуктора лактозного оперона. [c.150]

    Определение пространственной структуры белков по аминокислотным последовательностям - одна из центральных задач молекулярной биофизики. Традиционные подходы, применяемые к расчету структуры небольших органических молекул, неэффективны для решения этой задачи в связи со следущими ососбенностями а) огромным числом переме1пшх, описывающих атомную структуру бел- [c.111]


Смотреть страницы где упоминается термин Белки пространственной структуры: [c.17]    [c.57]    [c.252]    [c.108]    [c.119]    [c.171]    [c.260]    [c.374]    [c.445]    [c.5]    [c.111]   
Аминокислоты Пептиды Белки (1985) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Структура белка

Структуры пространственные



© 2025 chem21.info Реклама на сайте