Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы исследования структуры рентгеноструктурный

    Рентгенографические методы анализа щироко используются для изучения структуры, состава и свойств различных материалов, и в том числе, строительных. Широкому распространению рентгенографического анализа способствовала его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто не доступных для других методов исследования. С помощью рентгенографического анализа исследуют качественный и количественный минералогический и фазовый состав материалов (рентгенофазовый анализ) тонкую структуру кристаллических веществ — форму, размер и тип элементарной ячейки, симметрию кристалла. Координаты атомов в пространстве (рентгеноструктурный анализ) степень совершенства кристаллов и наличие в них зональных напряжений размер мозаичных блоков в монокристаллах тип твердых растворов, степень их упорядоченности и границы растворимости размер и ориентировку частиц в дисперсных системах текстуру веществ и состояние поверхностных слоев различных материалов плотность, коэффициент термического расширения, толщину листовых материалов и покрытий внутренние микродефекты в изделиях (дефектоскопия) поведение веществ при низких и высоких температурах и давлениях и т. д. [c.74]


    МЕТОДЫ ИССЛЕДОВАНИЯ СТРУКТУРЫ ПОЛИМЕРОВ Рентгеноструктурный анализ [c.35]

    В данной главе рассматриваются наиболее важные и широка применяемые методы исследования структуры силикатов дифференциальный термический анализ, рентгеноструктурный и рентгенофазовый анализ, электронная микроскопия, инфракрасная спектроскопия, спектры комбинационного рассеяния и электронный парамагнитный резонанс. [c.150]

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]

    Рентгеноструктурный анализ. Метод исследования с помощью дифракции рентгеновских лучей. За 65 лет, прошедших со времени открытия дифракции рентгеновских лучей в кристаллах, рентгеноструктурный анализ превратился в массовый метод исследования структуры неорганических кристаллов и полимерных веществ [310—312]. Применительно к исследованию асфальтенов он начал использоваться последние 20 лет. [c.154]

    В общем курсе кристаллохимии рассматриваются методы исследования структуры кристаллов — рентгеноструктурный анализ, нейтронография и, частично, электронография. Однако не дается изложение специального метода рентгеноструктурного анализа, который используется для определения абсолютной конфигурации молекул. Такая задача возникает при изучении оптически активных веществ. В гл. VIH, IX и X представлены оптические методы исследования оптически активных веществ. Особенность этих методов состоит в том, что легко определить с их помощью различие в абсолютной конфигурации молекул, но нет возможности прямого отнесения экспериментальных данных по ДОВ или КД к определенному энантиомеру. Именно эту проблему и решает метод аномального рассеяния рентгеновских лучей. [c.216]

    Рентгеноструктурными, электронографическими и другими новыми методами исследования структуры углерода установлено, что чистый углерод кристаллизуется с образованием кубической (алмазы) и гексагональной (графит) форм. В узлах кристаллической решетки алмаза каждый атом углерода направляет свои четыре о-связи к четырем соседним атомам. Расстояние между атомами в решетке алмаза такое же, как между атомами углерода в органических соединениях— 1,54 А. Энергия связи между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть и большую химическую стойкость. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим при нагреве алмаза без доступа воздуха он переходит в термодинамически более устойчивое состояние — в графит. В кристалле графита (рис. 12) атомы углерода в базисных плоскостях расположены в углах шестиугольников, на расстоянии 1,42 А, т. е. на таком л<е расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находяш,ихся на расстоянии 3,345 А. Относительно большое расстояние между базисными плоскостями обусловливает специфические физико-химические и механические свойства графита. Значительное расстояние между базисными плоскостями приводит к тому, что между ними могут внедряться атомы других элементов меньших размеров. [c.50]


    Рентгенография и электронография стали в современной науке новым мощным методом исследования структуры молекул. Иногда можно слышать скептические замечания о том, что рентгеноструктурный анализ только подтверждает заключения о строении молекул, полученные с помощью классических методов органической химии. [c.8]

    Одно из следствий относительности понятия близко и далеко у полимеров — потеря однозначной связи между данными различных методов исследования структуры и свойств полимерных тел, в частности рентгеноструктурного и термодинамич. Напр., при рентгеноструктурном исследовании низкомолекулярных веществ можно с полной уверенностью утверждать, что обнаружение наличия или отсутствия трехмерного дальнего порядка в расположениях молекул свидетельствует о [c.60]

    Изучение структуры и свойств индивидуальных н. парафиновых углеводородов начато еще в 20-х годах текущего столетия причем главным методом исследования был рентгеноструктурный анализ. Следует отметить, что исследования н. парафинов чрезвычайно осложняются трудностями получения углеводородов высокой степени чистоты и в виде достаточно больших и хорошо оформленных монокристаллов. За последние годы путем сочетания классических методов органической химии с использованием масс-спектрометрии, дифференциально-термического, рентгеновского и других методов, контролирующих степень чистоты препаратов, синтезированных или выделенных из нефтяных фракций, многим исследователям удалось получить образцы н. парафинов высокой степени чистоты и изучить их структуру и свойства [4—7]. [c.181]

    Поведение значительной части комплексов никеля(П) в любых условиях не укладывается в рамки представлений о каком-либо одном. из трех типов структуры, описанных выше. Поэтому эти комплексы издавна называют аномальными, и только в последние годы в связи с успехами теории поля лигандов и с широким применением физических методов исследования, например рентгеноструктурного анализа, удалось удовлетворительно объяснить многие из этих аномалий. Можно выделить три главные формы структурных переходов, которые охватывают почти все известные виды аномального поведения. В дальнейшем будет рассмотрена каждая из них. Некоторые редко встречающиеся явления в обсуждение не включены. [c.304]

    Выводы, сделанные на основе исследования плотности кокса этим методом, не противоречат основным результатам рентгеноструктурного анализа, а также данным, полученным новыми современными методами исследования тонкой структуры коксов. Это объясняется тем, что величина и характер пористости коксов из различных нефтепродуктов, так же как и величина плотности, тесно связаны с природой исходного сырья, механизмом процесса коксования и последующими изменениями структуры углеродистого вещества при тепловом воздействии на кокс. Уже исследования текстуры нефтяных коксов, выполненные нами, показывают, что пространственное распределение плотной массы и микропор (при увеличении в 60—200 раз) довольно четко отражает различия в природе исходного сырья для коксования. [c.231]

    Несовершенство кристаллической структуры полимеров даже при высокой степени кристалличности, малый размер кристаллитов, практическая (за редким исключением) невозможность получения монокристаллов затрудняют расшифровку рентгенограмм полимеров из-за ограниченного числа рефлексов, их размывания и перекрывания . Поэтому, как правило, рентгеноструктурный анализ полимерных систем проводят в сочетании с другими методами исследования структуры вещества, например электронной микроскопией. [c.253]

    Рентгенография кристаллов является самым старым и в то же время самым универсальным методом исследования структуры молекул. Слово универсальный использовано здесь в том смысле, что этот метод не накладывает ограничений на размер молекул рентгеноструктурный анализ позволяет, по крайней мере, [c.19]

    Учитывая трудоемкость рентгеноструктурного анализа и необходимость наличия объекта обязательно в виде кристалла, приходится признать, что этот метод имеет смысл применять лишь для образцов, представляющих особый интерес, которые к тому же должны достаточно легко кристаллизоваться. Рентгеноструктурный анализ — самый информативный из методов исследования структуры макромолекул. Он может рассматриваться как эталон, и с его результатами полезно сравнивать результаты, полученные другими методами. Рентгеноструктурный анализ не является непогрешимым методом, и он не может дать ответ на все интересующие нас вопросы о каком-нибудь белке или нуклеиновой кислоте, но других методов, способных дать столь подробные сведения о структуре, пока не существует. [c.187]

    Модель гомогенной мембраны Теорелла-Майера-Сиверса, ставшая теоретической опорой знаменитой монографии Ф. Гельфериха [1], позволила понять многие свойства ионообменных мембран, определяющие поведение мембранной системы в целом проводимость, селективность, сорбция электролита. Однако постепенно стали накапливаться экспериментальные данные, не укладывающиеся в эту простую модель невыполнение соотношений Доннана по сорбции электролита, аномальный вид зависимостей электропроводности и диффузионной проницаемости от концентрации внешнего раствора электролита и другие. В то же время появились различные методы исследования, прямо (рентгеноструктурный анализ, спектроскопические (ЯМР, ЭПР и др.) методы) и косвенно (эталонная порометрия, дифференциальная сканирующая калориметрия и др.) указывающие на структурную неоднородность мембран. Маки и Мире [2] и Глюкауф [3, 4] с разных точек зрения первые попытались количественно объяснить особенности сорбционных и проводящих свойств ионообменных мембран, исходя из представления о неравномерном распределении в них функциональных групп. Впоследствии было предложено большое число структурно-кинетических моделей мембран, рассматривающих неоднородность структуры на разных масштабных уровнях [5-20]. [c.6]


    Под вторичной структурой белка понимают форму полипептидной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипептидные цепи [c.420]

    Основным методом определения структуры кристаллов является рентгеноструктурный анализ. Установка для исследования (рис. 114) состоит из источника рентгеновских лучей, устройства для закрепления и ориентирования исследуемого образца и приемника рассеянного образцом излучения. Приемниками служат фотопластинки (или счетчики рентгеновских квантов). [c.182]

    РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ — метод исследования строения вещества, использующий дифракцию (рассеивание) рентгеновских лучей. Р. а. является основным методом определения структуры кристаллов. Метод основан на дифракции рентгеновских лучей частицами веществ, расположенными в пространстве кристалла. [c.214]

    Длина волны рентгеновских лучей того же порядка, что и расстояние между атомами и ионами в молекулах или кристаллах 0,1 нм). Поэтому кристалл ведет себя по отношению к рентгеновскому лучу как дифракционная решетка. Рентгеноструктурный метод исследования основан на том, что рентгеновские лучи, проходя через кристалл, отклоняются или отражаются вполне закономерным образом в зависимости от параметров кристаллической решетки. Помещая на их пути фотопленку, получают рентгенограмму кристалла в виде точечных пятен для упорядоченных структур или в виде тонких дуг для волокнистых и порошкообразных структур. [c.395]

    Рентгеноструктурный анализ — это метод исследования внутренней структуры кристаллов при помощи его определяют расстояния между соседними атомами в кристаллической решетке металлов и устанавливают тип кристаллической решетки (подробнее см. 24). [c.277]

    Исследования структуры металлических жидкостей начались еще на ранней стадии становления метода рентгеноструктурного анализа. Внимание исследователей привлекла жидкая ртуть, свойства которой к тому времени были хорошо известны. [c.169]

    Рентгеноструктурный анализ. Он применяется при исследовании структуры кристаллов, жидкостей и аморфных тел. В то же время рентгеноструктурный анализ — основной метод установления структуры кристаллических решеток твердых тел. Неорганическая и органическая кристаллохимия главным образом обязана результатам рентгеноструктурного анализа неорганических и органических веществ. В зависимости от цели и особенностей объекта исследования для получения дифракционной картины используют непрерывное тормозное или дискретное характеристическое излучение в том или ином методе рентгеноструктурного анализа (РСА). Исследование кристаллической структуры различными методами РСА позволяет определить размеры и симметрию элементарной ячейки, а также расположение атомов и молекул в твердом теле. [c.195]

    После 1945 г. число работ по технологии, механизму и кинетике коксования и по свойствам нефтяноА кокса увеличилось [10, 24, 25, 85, 225 и др.]. Ряд статей был посвящен исследованию структуры углеродистых веществ (углей и коксов) методом рентгеноструктурного анализа, механизму графитации углеродистых веществ и в том числе нефтяного кокса [99—102]. [c.10]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]

    Применение наряду с химическими методами исследований современных физических методов (рентгеноструктурный анализ, электронография, ЭПР и др.) позволило сделать определенные заключения о структуре карбонизованных веществ, к которым относится н нефтяной кокс. [c.195]

    Бензол СбНб—простейший из огромного количества высоконенасыщенных циклических или полициклических углеводородов, химическое поведение которого отлично от поведения алкенов и носит название ароматичность . Строение бензола долгое время оставалось загадкой, которая сегодня полностью разрешена. Физические методы исследования (например, рентгеноструктурный анализ кристаллов бензола) показали, что молекула бензола представляет собой правильный плоский шестиугольник, образованный атомами углерода, каждый из которых связан с атомом водорода. Длины всех связей С—С в этой структуре равны. Симметричность молекулы бензола согласуется со многими исследованиями, где была установлена полная химическая эквивалентность всех атомов углерода (иными словами, для монозамещенных производных бензола не наблюдается изомерия положения заместителя). [c.47]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Еще одии интерфсреиционцо-днфракцнониый метод — электро и огра-и и — метод исследования структуры, основанный на дифракинр) электронов Этот метод, в основ юм аналогичный рентгеноструктурному анализу, Имеет ряд существенны.х прен.муществ  [c.89]

    Дифракция рентгеновских лучей и электронов относится к числу наиболее широко используемых методов изучения структуры кристаллических твердых тел. Данные рентгеноструктурного аналиж порошков и монокристаллов приводятся во многих работах по цеолитам. В последнее время большее распространение получило изучение дифракции электронов. Структурные исследования цеолитов, выполи ненные в предыдушие десять лет, привели к пониманию того, что ИК-спектроскопия может давать информацию не только о ближнем порядке и характеристиках связи, но и о дальнем порядке в кристаллических твердых телах. Последнее связано со взаимодействиями в решетке и электростатическими и другими эффектами. Все это характеризует ИК-спектроскопию как очень быстрый и эффективный метод исследования структуры. [c.104]

    Бернсом II др. [4] (см. стр. 272) прп нейтронографнческом исследовании, в процессе которого было зарегистрировано около 600 отражений. Табл. 1 дает, таким образом, интересное сравнение (и, судя по вычисленным среднеквадратичным отклонениям, в порядке уменьшающейся точности) между нейтронографическим п рентгеноструктурным (счетным и визуальным) методами исследования структуры Хер4. Можно видеть, что счетный метод по сравнению с нейтронографическим не приводит к более точному определению структуры. Поскольку счетные методы объективно должны давать более надежные оценки интенсивностей, чем визуальные методы, то, вероятно, другие факторы, такие, как поглощение и рост кристаллов, приводили в обоих рентгеноструктурных методах к систематическим ошибкам, которые перекрывали эффект чисто случайных ошибок. [c.258]

    Для изучения пространственной конфигурации полипептидных цепей широко пользуются физическими методами исследования, особенно рентгеноструктурным анализом. Для облегчения задачи расшифровки рентгенограмм в определенные участки молекулы белка в таких случаях часто вводят такие легко распознаваемые атомы, как атомы ртути, серебра и др. На рис. 45 дана модель, изображаюп1 ая пространственную структуру молекулы белка миоглобина по данным рентгеноструктурного анализа. [c.213]

    Эффективным, но трудоемким является рентгеноструктурный анализ металла. Он применяется в основном для научных целей. То же самое можно сказать и об электронно-микроскопи-ческом методе исследования структуры. [c.18]

    Для современной органической химии при решении структурных проблем все большее значение приобретают физические методы исследования. Теплоты сгорания, парахор, дипольные моменты, изучение кинетики, магнитная проницаемость, метод меченых атомов, константы хроматографии и электрофореза, скорость осаждения при центрифугировании, люминесцентный анализ, нефелометрия, по-ляриметрия, масс-спектроскопия, рентгеноструктурный анализ, но особенно, — спектроскопия в видимой, инфракрасной, ультрафиолетовой областях, изучение спектров электронного парамагнитного и ядернОго магнитного резонанса открыли необыкновенно широкие возможности для решения задач установления строения молекул. Физические исследования все чаще оказываются решающими для понимания структуры соединения. [c.19]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением составляющих их частиц - атомов, ионов или молекул. Как указано выше, это расположение может быть представлено в виде кристаллической решетки - пространственного каркаса, образованного пересекающимися друг с другом плоскостями. В точках пересечения трех плоскостей (узлах решетки) лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности М. В. Ломоносов использовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось только в XX столетии, после того как в 1912 г. Лауэ, Фридрих и Книппинг (Германия) открыли явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.151]

    В последние десятилетия наблюдалось бурное развитие рентгеноструктурного анализа (в первую очередь с использованием монокристаллов), а также других дифракционных методов исследования. Это обусловлено рядом причин. Одной из них явилось кардинальное усовершенствование рентгеновской аппаратуры, включая разработку ряда типов дифрактометров, управляемых ЭВМ, для съемки монокристаллов, внедрение новых способов регистрации рентгеновского излучения, использование монохроматоров. В результате точность экспериментальных данных резко возросла и появилась возможность решения принципиально новых задач (локализация легких атомов, определение деталей распределения электронной плотности на базе совместных данных нейтронографического и рентгеновского методов). Не менее важным обстоятельством явилась разработка комплексов программ обработки результатов измерений и определения структуры кристаллов, зачастую с недостаточно охарактеризованным химическим составом. Этой области применения рентгеноструктурного ана 1иза в химии посвящено несколько прекрасных монографий и учебников, и структурные разделы почти обязательно включаются в работы по синтезу новых соединений, так как дают непосредственные данные о пространственном расположении атомов в кристаллах а иногда являются и удобным способом определения химического состава, в особенности если известен качественный состав. [c.3]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    В общем случае конформация Б. в кристалле может отличаться (обычно весьма незначительно) от конформации в р-ре. Поэтому наряду с исследованием кристаллов проводят изучение Б. и в его прир среде. Существует набор методов исследования пространств, структуры Б. в р-ре. Нанб. часто используемые-оптич. методы (УФ-, ИК- и Раман-спектроскопия, круговой дихроизм, флуоресценциях ЯМР и ЭПР. Ни одним из этих методов в отдельности, как правило, невозможно определить конформацию Б, тогда как их комбинация в ряде случаев дает информацию, к-рая сравнима по ценности с рентгеноструктурным анализом. [c.252]


Смотреть страницы где упоминается термин Методы исследования структуры рентгеноструктурный: [c.106]    [c.21]    [c.210]    [c.210]    [c.40]    [c.50]    [c.4]   
Комплексообразующие иониты (1980) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Метод структур



© 2025 chem21.info Реклама на сайте