Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зернистость

    За последние годы в процессах нефтепереработки и нефтехимии получили широкое применение различные зернистые материалы, начиная с таблеток п шариков диаметром до 5—6 мм и кончая порош а ми. [c.58]

    Зернистые материалы применяются в качестве катализаторов, адсорбентов и теплоносителей. Все эти материалы обладают некоторыми обш ими свойствами, знание которых позволяет выявить закономерности их поведения в аппаратах различного назначения и конструктивного оформления, работающих при разных гидравлических режимах. [c.58]


    Величина угла скольжения зависит от характера поверхности, но которой ссыпается зернистый материал. [c.59]

    При неблагоприятном гранулометрическом составе зернистого материала могут образовываться более уплотненные зоны, оказывающие значительное сопротивление прохождению газа, вследствие чего в слое возникают каналы, через которые газ проходит избирательно. Это явление называется канальным проскоком или каналированием и характерно для очень тонких порошков. [c.71]

    Для обезвоживания осадков сточных вод применяют центрифу-гир. ) 5. т1е и фильтрование (через ткани). Для окончательной топкой очистки сточных вод, предварительно очищенных другими способами, применяют фильтрование через слой зернистого материала. [c.217]

    Появление комплексов в растворе сказывается не только на равновесных потенциалах металлов, но и на величине перенапряжения и на характере катодных осадков. При переходе от простых электролитов к комплексным обычно наблюдается повышение перенапряжения и уменьшение зернистости осадков одновременно подавляется тенденция к образованию и росту дендритов. Так, се- [c.463]

    Рнс. IX.3. Зависимость продольного и поперечного чисел Пекле в зернистом [c.264]

    Здесь — число Пекле, отнесенное к полной длине слоя (оно должно быть довольно велико). Для зернистого слоя Р =< а для пустой трубы с эффективным коэффициентом продольной [c.295]

    M. Э. A Э p о B, H. H, Умник, Измерение скорости газа в реальном зернистом слое, ЖПХ, № 10, 1009 (1950).] [c.301]

    B. Г. Л е в п ч, Л. М. Письмен, С. И. К у ч а н о в, Гидродинамическое перемешивание в зернистом слое. Физическая модель застойных зон. ДАН СССР, 168, № 2 (1966). [c.304]

    Анализ процессов продольного и поперечного переноса в зернистом слое, вывод эффективного квазигомогенного уравнения и сравнение различных моделей слоя проведены в работах  [c.304]

    Л. М. Письмен, С. И. К у ч а н о в, В. Г. Л е в и ч. Поперечная диффузия и теплопроводность в зернистом слое, Прикл. мех. тех. фпз,, Л 2 (1967). [c.304]

    И. К у ч а н о в, Л. М. Письмен, Квазигомогенная модель зернистого слоя, Теор. осн. хим. технол., 1, № 1, (1967). [c.304]

    Катализатор, загруженный в реактор, представляет собой зернистый беспорядочно насыпанный слой. Такой слой можно рассматривать как однородную изотропную среду. Это означает, что физические свойства среды (каталиаатора) в любой точке одинаковы. [c.79]

    Аппараты со стационарным зернистым слоем [c.1]

    Аппараты со стационарным зернистым слоем Гидравлические и тепловые основы работы.—Л. Химия, 1979.— 176 с., ил. [c.2]

    Во-первых, на базе представления о зернистом слое как принципиально неоднородной системе проведен критический статистический анализ некоторых основных понятий, которыми, иногда не задумываясь, пользуются практики — структура слоя, его порозность и удельная поверхность, средняя локальная скорость потока — и очерчены границы применимости этих понятий. [c.3]


    Во-вторых, сопоставление законов гидравлического сопротивления, диффузии, тепло- и массообмена четко показывает, как при переходе от вязкого к инерционному течению постепенно изменяется структура пронизывающего зернистый слой потока, основные градиенты сосредотачиваются непосредственно у поверхности элементов слоя и последние начинают работать практически независимо друг от друга. [c.3]

    Наконец, в-третьих, при сопоставлении многочисленных, предлагавшихся в литературе, расчетных формул (только для гидравлического сопротивления их уже насчитываются сотня), показывается , что в том интервале, где каждая из них установлена, они по существу практически не отличаются от предложенных нами более простых и универсальных зависимостей Эту универсальность мы считаем особо важной для рекомендуемых нами инженерных формул, предназначенных для предварительного расчета характеристик самых разнообразных зернистых слоев. В монографии показаны пути получения этих инженерных формул и как на основе физических представлений о структуре слоя и потока выделялись основные параметры и подбирались [c.3]

    Геометрия зернистого слоя [c.5]

    Стационарный слой катализатора или сорбента, кусковой или зернистой насадки, засыпанный в промышленный аппарат, представляет собой систему с весьма сложными и многообразными геометрическими характеристиками. Полное их описание предполагает задание формы элементов и их общего числа N в единице объема линейных размеров 1, й2,. .., йц всех зерен и их взаимного расположения. Последнее определяет размер и характер просветов между зернами, извилистость и взаимосвязь поровых каналов, по которым движется протекающая через аппарат жидкость или газ. Для несферических частиц существенна и их конкретная ориентация относительно потока. [c.5]

    Столь детальное описание структуры зернистого слоя чрезмерно сложно и в нем нет необходимости. В большинстве практически важных случаев число элементов-зерен слоя в рассматриваемом аппарате весьма велико и вероятность их укладки в какой-либо определенной координации относительно направления потока, при беспорядочной загрузке в аппарат, ничтожно мала. Целесообразно поэтому рассматривать зернистый слой как в среднем однородную изотропную среду и вводить некоторые усредненные обобщенные характеристики его [1, 2]. К вопросу о границах применимости подобного усреднения мы еще вернемся в разделе I. 4. [c.5]

    На рис. I. 1 приведены примеры элементов зернистого слоя как правильной, так и неправильной формы. Иногда применяют зерна, обладающие еще и внутренней пористостью евн- [c.5]

Рис. 1. 1. Элементы зернистого слоя Рис. 1. 1. <a href="/info/1455304">Элементы зернистого</a> слоя
    Поверхность и объем пронизывающих эти зерна крупных и мелких, сквозных и тупиковых пор существенно определяют статику (емкость) и кинетику адсорбции, кинетику каталитических реакций, но в этих порах практически отсутствуют гидродинамические потоки. Поэтому, в.величину е, характеризующую гидродинамические свойства зернистого слоя, мы не будем включать 8вн. [c.6]

    Угол естественного откоса и образуется плоскостью естественного откоса штабеля зернистого материала с горизонтальной плоскостью (рис. 38). Он характеризует статическое равновесие между массой твердого материала и OKpyjKaronien его средой. [c.59]

    Различают три качестненно различных состояния-слоя зернистого материала, через которые проходит восходящий поток газа или ЛхИДКОСТИ. [c.69]

    При достаточтю больших скоростях весь сло11 увлекается восходящим потоком и начинает двигаться вверх, т. е. начинается пневмотранспорт зернистого материала (рис. 44, в). [c.69]

    В пределе пх диаметр может достигнуть диаметра аппарата. Последнее явление обычно наблюдается в аппаратах небольшого диаметра при большом соотношении высоты и диаметра слоя. Газовый пузырь увеличивается в размере до тех пор, пока образовавшийся над ним уплотненный слой твердого материала не обрушится внутрь пузыря. Это явление пазываетсгс поршневым проскоком (рис. 46). Оно крайне нежелательно, так как ухудшает контакт между газом и зернистым материалом. [c.71]

    Адсорберы с неподвижным слоем адсорбента представляют собой вертикальпые либо горизонтальные пустотелые аппараты, занолнеп-пые слоем зернистого адсорбента. [c.258]

    Гранулированный твердый катализатор располагается в реакторе в лромежутках между поверхностями охлаждения и омывается в направлении сверху вниз потоком синтез-газа. Путем использования нового катализатора и новых данных по теплопередаче и массообмену в зернистых материалах, при разработке которых большая роль принадлежала Бротцу [70], выход продуктов синтеза с реактора удалось увеличить с 2 до 50 т [71]. [c.127]


    Запыленный газ в зернистых фил1>трах проходит через насыпной слой гранул размером 2—5 мм, имекзщий высоту 100 м.м. Регенерация слоя осуществляется механическим ворошением и обратной продувкой. Запыленный воздух обратной продувки, нройдя циклон, сметпвается с потоком неочищенного газа. [c.209]

    Теперь поставим вопрос, как оценить величину Л. Прежде всего Q представляет собой скорость теплообмена, отнесенную к единице объема слоя, и потому /г имеет вид Ыр, где р — площадь поперечного сечения реактора, деленная на периметр охлаждающей поверхности (иногда эту величину называют гидравлическим радиусом), и к — коэффициент теплопередачи, отнесенный к единице охлаждающей поверхности. В рассматриваемой системе, очевидно, существуют три последовательных сопротивления теплопередаче от реагирующей смеси или зернистого слоя к стенке реактора, через стенку реактора и от стенкп к теплоносителю. Последнее сопротивление зависит от характеристик потока теплоносителя и может быть оценено стандартными методами, применяемыми при расчете теплообменников. Скорость теплопередачи через стенку определяется решением задачи теплопроводности. Для гомогенного реактора скорость теплопередачи от реагирующей смеси к стенке также оценивается стандартными методами, но для зернистого слоя вопрос более сложен. Эксперименты [c.272]

    Порозпость катализатора — это объем зернистого слоя, пе занятый частицами, т. е. доля пустоты в общем объеме зернистого слоя (в м /м ). В этом свободном объеме движется парогазовая илипа-рожидкостная реакционная смесь, проходя через слой катализатора. Порозность зависит от формы частиц, их шероховатости, плотности упаковки в слое. Порозность частиц влияет на сопротивление в слое катализатора. Частицы катализатора обладают внутренними порами, в которых происходит диффузия сорбирующихся и реагирующих компонентов. Большая часть активных центров катализатора расположена внутри пор. Реакции гидрирования протекают как на поверхности катализатора, так и внутри его пор. [c.79]

    Предлагаемая книга была задумана как развитие нашей предыдущей, более широкой монографии, посвященной и стационарному, и кипящему зернистому слою, вышедшей в 1968 г. Выполненные за истекшие 10 лет под руководством проф. М. Э. Аэрова новые исследования стационарного зернистого слоя, анализ многочисленных публикаций и инженерной практики, как нам представляется, подтвердили правильность сформулированного нами ранее подхода к рассматриваемым проблемам и потребовали дальнейшего его развития и уточнения. Это развитие и совершенствование проведено нами в трех, важных для инженера, направлениях. [c.3]

    I. Обозначим через г (м /м ) долю не занятого зернистыми элементами объема слоя (порозность). В аппарате доля любого сечения, пронизываемого потоком ( живое сечение) 1 ), в соответствии с принципом геометрического подобия Кавальери — Акера, в среднем также равна е (м /м ). Значение е зависит от формы элементов (сплошные или с наличием сквозных внутренних полостей), состояния их поверхности и характера упаковки в слое и в принципе не зависит от абсолютной величины геометрически подобных элементов слоя. [c.5]

    В таких технологических процессах, как адсорбция, катализ, сушка, где используют внешнесплошные, хотя и внутреннепористые частицы, зернистый слой весьма часто состоит из одинаковых или близких по размерам элементов (монодисперсные слои). Форма самих элементов зачастую близка к шару или цилиндру, у которого диаметр высота — величины одного порядка. Во многих случаях торцевые и боковые поверхности элементов являются частью сферы. Геометрические характеристики подобных слоев близки к соответствующим характеристикам слоя, составленного из шаров одинак-рвого диаметра. На характер упаковки влияют также свойства материала элементов слоя. [c.7]


Смотреть страницы где упоминается термин Зернистость: [c.57]    [c.69]    [c.69]    [c.70]    [c.70]    [c.72]    [c.209]    [c.237]    [c.273]    [c.294]    [c.301]    [c.301]    [c.2]    [c.9]   
Физические и химические основы цветной фотографии (1988) -- [ c.139 ]

Физические и химические основы цветной фотографии Издание 2 (1990) -- [ c.139 ]




ПОИСК







© 2025 chem21.info Реклама на сайте