Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ген эукариотические, экспрессия

    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]


    Никакой универсальной стратегии оптимизации экспрессии клонированных генов не существует. Больщинство таких генов имеют уникальные молекулярные свойства, и оптимальные системы экспрессии для каждого из них приходится подбирать всякий раз заново. Эффективность экспрессии любого чужеродного гена зависит также от его родства с организмом-хозяином. Несмотря на то что многие представители как про- так эукариотических организмов способны [c.105]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующего элемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов ( У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. 112, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на 3 -фланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Если вектор представляет собой плазмиду, реплицирующуюся независимо от хромосомы, то он должен содержать сайт инициации репликации, функционирующий в хозяйской клетке. Если же вектор предназначен для встраивания в хозяйскую хромосомную ДНК, то для обеспечения рекомбинации он должен нести последовательность, комплементарную определенному участку хромосомной ДНК хозяина (хромосомный сайт интеграции). Поскольку технически многие операции с рекомбинантными ДНК сложнее проводить в клетках эукариот, чем прокариот, большинство эукариотических векторов сконструированы как челночные. Другими словами, эти векторы несут два типа сайтов инициации трансляции и два типа селективных маркерных генов, одни из которых функционируют в Es heri hia oli, а другие — в эукариотических хозяйских клетках. Такие векторные системы экспрессии разработаны для дрожжей, насекомых и клеток млекопитающих. [c.136]


    Недостаточно создать новый белок, важно оптимизировать экспрессию его гена. Для начала исследователи определяют возможность синтеза достаточных количеств аутентичного белка в прокариотической или эукариотической системах экспрессии. Прокариотическим системам отдается предпочтение, поскольку работа с ними обходится дешевле, а производительность выше. К сожалению, не все микроорганизмы синтезируют функциональные формы гетерологичных белков с одинаковой эффективностью, поэтому необходимо проводить сравнительные количественные оценки. [c.208]

    Таким образом, в сконструированных промежуточных рекомбинантных ДНК эукариотический ген будет находиться под контролем бактериальных регуляторных элементов. Целесообразнее встраивать ген в подходящий вектор для экспрессии, который уже [c.122]

    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Уже создано большое количество векторных систем, которые включают как транскрипционный, так и трансляционный сигналы, обеспечивающие экспрессию клонированных эукариотических генов в Е. соИ. Одной из таких систем [c.120]

    Для полного понимания молекулярных механизмов сложного процесса биогенеза мРНК предстоит решить множество вопросов. В частности, необходимо вьщелить в чистом виде и охарактеризовать белковые факторы, принимающие участие в этой регуляторной системе. Далее следует раскрыть механизмы узнавания промотора, терминации и антитерминации, избирательного метилирования, а также тонкие молекулярные механизмы регуляции сплайсинга. Решение указанных проблем будет, несомненно, способствовать лучшему пониманию сущности механизмов регуляции экспрессии генов эукариотических клеток в норме и при патологии. [c.493]

    Суммируя, можно сказать, что экспрессирующие векторы млекопитающих столь же универсальны и эффективны, как и векторы для других эукариотических систем экспрессии, если речь идет о получении аутентичных рекомбинантных белков для исследовательских и медицинских целей. Однако промышленный синтез рекомбинантных белков с использованием модифицированных клеток млекопитающих обходится слишком дорого. В этом случае предпочтительны менее дорогие системы экспрессии, за исключением тех ситуаций, когда [c.153]

    Прокариотические системы экспрессии успещно используются для синтеза многих белков. Однако некоторые белки для превращения в активную форму должны претерпеть специфические пост-трансляционные модификации - гликозилирование, фосфорилирование или ацетилирование, а бактерии к этому не способны. Поэтому бьшо решено попытаться экспрессировать клонированные гены в эукариотических клетках с помощью специально созданных эукариотических экспрессирующих векторов. [c.154]

    Известно, что в клетках эукариот ДНК, соединенная с белками (гистонами), упакована в нуклеосомы (гл. 14). В этом состоянии транскрипция невозможна, и для экспрессии генов необходимо деблокирование транскриптона. Следовательно, образование и разрушение нуклеосом является важным фактором регуляции эукариотических генов. Каким же образом происходит деблокирование транскриптона  [c.473]

    Явление сплайсинга РНК вполне обычно для эукариотических клеток, т.е. клеток, имеющих ядро. Считают, что для прокариотических клеток, не содержащих отчетливо выраженных ядер, сплайсинг отсутствует. Это единственная главная стадия экспрессии генов, существенно различающая клетки двух названных типов. Поэтому интересно исследовать, как влияет сплайсинг РНК на экспрессию генов. Помимо этого необходимо выяснить, не являются ли интроны в генетическом коде ответственными за эволюцию эукариотических генов. [c.181]

    Технология рекомбинантных ДНК позволяет выделять гены как прокариотического, так и эукариотического происхождения, переносить этот ген (или несколько генов) в хромосомы реципиентного растения и обеспечивать его экспрессию. Применение этой технологии делает поиск более целенаправленным и значительно расширяет возможности манипулирования генетическим аппаратом. [c.49]

    Альтернативный сплайсинг несет определенные выгоды, придавая своеобразную гибкость экспрессии эукариотических генов. Он создает разнообразие продуктов, кодир емы. одним отрезком ДНК. По мере развития один и тот же отрезок ДНК используется для разных, хотя и сходных, целей. Ранее предполагали, что такой принцип экспрессии генов используется ко.мпактными геномами [c.183]

    Существование интронов в эукариотических генах обеспечивает регуляцию экспрессии генов в развитии благодаря альтернативным путям сплайсинга, в основе которых лежит возможность испмьзо-вать разные экзоны одного гена для образования разных мРНК. Кроме того, в нитронах (т. е. внутри гена) могут на.ходиться важные элементы регуляции транскрипции — усилители, нли энхансеры Сангл. enhan ers) см. гл. X). [c.191]

    Последовательность оснований длиной 6 — 8 нуклеотидов, расположенная непосредственно перед инициирующим кодоном АУГ у Е. соИ, определяет эффективность процесса трансляции. Эта последовательность представляет собой участок связывания мРНК с рибосомой, и его сдвиг в ту или иную сторону способен уменьшать эффективность трансляции мРНК. По имени исследователей, идентифицировавших этот участок, он был назван последовательностью Шайн-Дальгарно. Обычно эту последовательность включают в состав самого вектора вместе с инициирующим кодоном на нужном расстоянии. При экспрессии векторов такого типа образуется гибридный белок, в котором несколько N-концевых аминокислотных остатков происходят от источника регуляторных элементов и инициирующего кодона прокариотического гена. Такие гибридные белки часто более стабильны обработка их химическим или ферментативным способом приводит к вьщелению эукариотической части белка. [c.123]


    В многоклеточных организмах среднее число регуляторных сайтов для одного гена минимум равно пяти положительные регуляторные белки связываются со своими специфическими последовательностями в структуре ДНК (вероятнее всего, посредством водородных связей между амидной группой Глн или Асн и пуриновыми и пиримидиновыми основаниями нуклеотидов). Следует указать еще на один момент, почему эукариотическая клетка использует положительные механизмы регуляции экспрессии генов. Подсчитано, что в геноме человека содержится около 100000 генов, соответственно каждая клетка при отрицательном механизме регуляции могла бы синтезировать 100000 разных репрессоров, причем в достаточных количествах. При положительном механизме регуляции большинство генов в принципе неактивно, соответственно молекула РНК-полимеразы не связывается с промотором и клетка синтезирует ограниченный и избирательный круг активаторных белков, необходимых для инициации транскрипции. [c.538]

    Для получения гетерологичных рекомбинантных белков с клонированной эукариотической комплементарной ДНК (кДНК) обычно используются прокариотические системы экспрессии. Однако в некоторых случаях эукариотические белки, синтезированные в бактериях, оказываются нестабильными или биологически неактивными. Кроме того, как бы тщательно ни проводилась очистка, конечный продукт может быть загрязнен токсичными веществами или веществами, вызывающими повышение температуры у человека и животных (пирогенами). Чтобы решить эти проблемы, для получения рекомбинантных белков, предназначенных для использования в медицине, были разработаны эукариотические системы экспрессии. Такие белки должны быть идентичны природным по своим биохимическим, физическим и функциональным свойствам. Неспособность прокариот синтезировать аутентичные варианты белков обусловлена в основном отсутствием у них адекватных механизмов внесения специфических посттрансля-ционных модификаций. [c.135]

    Из всех этих модификаций прокариотические хозяйские клетки наименее всего способны осуществлять правильное гликозилирование и модификацию специфических аминокислот в гетерологичном белке. Однако ни одна эукариотическая система не может осуществить одновременно все постгрансляционные изменения в каждом потенциальном гетерологичном белке. Таким образом, для получения белка с полным набором специфических модификаций необходимо провести тестирование различных эукариотических систем экспрессии и найти такую, которая воспроизводила бы биологически аутентичный продукт. [c.135]

    Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]

    Все это заставило ученых исследовать возможность получения гетерологичных белков с помощью других видов дрожжей и с использованием эукариотических систем. В частности, изучались соответствуюшие векторы — системы экспрессии, содержащие видоспецифичные регуляторные последовательности транскрипции и трансляции, возможность трансформации этих видов и получения высокого выхода белков и возможность крупномасштабного культивирования организма-хозяина. В качестве альтернативы S. erevisiae можно использовать Kluyveromy es la tis, дрожжи, которые применяют для промышленного производства лактозы [c.140]

    На первый взгляд разработка любой эукариотической системы экспрессии представляется относительно простой процедурой, состоящей в подборе соответствующих регуляторных последовательностей, встраивании их в вектор в определенном порядке и клонировании гена-мишени таким образом, чтобы обеспечивалась его эффективная экспрессия. На практике же создание первого поколения эукариотических экспрессирующих векторов оказалось весьма кропотливым делом, основанным на методе проб и ошибок. До появления работы Муллигана, Хоуарда и Берга [c.146]

    Изучение структур геномов различных организмов поначалу создало представление о незыблемости локализации тех или иных генов в хромосомах. Это представление было пересмотрено после открытия Б. Мак Клинток, которая в опытах с кукурузой показала, что гены могут перемещаться в пределах генома и влиять на механизмы экспрессии. В дальнейшем было установлено, что это явление характерно для многих эукариотических и прокариотических клеток. Транспозон Е. соИ представляет собой олигонуклеотид, включающий в себя ген фермента транспозазы, ответственной за перемещение транспозона, а также короткие концевые нуклеотидные последовательности. Транспозоны эукариотических клеток гораздо больше и включают в себя набор различных генов. Внутригеномное перемещение и встраивание транспозонов требует разрыва и последующего сращивания цепи ДНК. Репликация транспозона в одном сайте цепи, а затем перемещение и репликация в другом создают благоприятные возможности для дальнейших гомологичных рекомбинаций в клетке. Следует отметить, что транспозоны, встраиваясь в случайные сайты хромо- [c.456]

Рис. 7.15. Двухвекторная система экспрессии. Клонированные гены (а и Р) кодируют субъединицы димерного белка ( Р). После одновременной трансфекции клетки двумя плазмидами в ней синтезируются обе субъединицы и собирается функциональный димерный белок. Оба вектора несут сайты инициации репликации, функционирующие в Е. oli (ori ) и в клетках млекопитающих (о/-/= ) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, эукариотический промотор (р) и сигнал полиаденилирования (ра), которые регулируют экспрессию селективного маркерного гена (СМ) и каждого из клонированных генов. Рис. 7.15. Двухвекторная <a href="/info/200746">система экспрессии</a>. <a href="/info/32984">Клонированные гены</a> (а и Р) кодируют субъединицы димерного белка ( Р). После одновременной <a href="/info/1324393">трансфекции клетки</a> двумя плазмидами в ней синтезируются обе субъединицы и собирается функциональный димерный белок. Оба вектора несут <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. oli (ori ) и в <a href="/info/200744">клетках млекопитающих</a> (о/-/= ) маркерный ген (Amp ) для отбора трансформированных клеток Е. oli, эукариотический промотор (р) и сигнал полиаденилирования (ра), которые <a href="/info/1899052">регулируют экспрессию</a> <a href="/info/200493">селективного маркерного гена</a> (СМ) и каждого из клонированных генов.
    Поэтому для осуществления экспрессии эукариотического гена соответствующая кДНК или синтетическая ДНК, содержащая кодирующую последоаательность, присоединяется в составе векторной молекулы к регуляторным элементам бактерии — промотору и рибосом-связывающему участку. [c.437]

    С помощью клонирования специфических генов и последующей их экспрессии в бактериях получен целый ряд белков, которые можно будет использовать в качестве лекарственных препаратов. Большинство этих белков имеют эукариотическое происхождение, так что для выделения нужного гена сначала получают препарат мРНК, обогащенный интересующими исследователя фракциями, затем создают кДНК-библиотеку и встраивают соответствующую ДНК в подходящий вектор для экспрессии. Произведя обмен участков родственных генов, кодирующих аналогичные белковые домены, или прямо заменяя сегменты клонированного гена, кодирующие функциональные части белка, можно создавать новые модификации таких белков. В качестве лекарственных средств можно использовать и некоторые ферменты. Например, для снижения вязкости слизи, которая накапливается в легких больных муковисцидозом, применяют в виде аэрозоля рекомбинантную ДНКазу I и альгинатлиазу. [c.224]

    Селективный маркерный ген, например ген неомицинфосфотрансферазы, который обеспечивает устойчивость трансформированных растительных клеток к канамицину. Поскольку этот ген (как и многие другие маркерные гены, используемые при трансформации растений) по своей природе прокариотический, необходимо поставить его под контроль растительных (эукариотических) сигналов регуляции транскрипции, в том числе промотора и сигнала терминации-полиаде-нилирования. Это обеспечит эффективную экспрессию гена в трансформированных растительных клетках. [c.377]

    Экспрессия эукариотических генов в прокариотических клетках не реализуется или реализуется с большим трудом В ядерных генах эукариот имеются интроны, а у бактерий нет системы сплайсинга, поэтому образующиеся чужеродные конечные продукты в бактериальных клетках, как правило, неактивны Однако использование векторных систем (в том числе "челночных") и ПЦР позволило успешно решать проблемы, связанные с созданием рДНК их клонированием и экспрессией в различных реципиентных клетках (прокариотических и эукариотических) [c.208]

    Контрансфекция ( ontransfe tion) Введение в одну эукариотическую клетку двух разных молекул ДНК. В случае системы экспрессии на основе бакуловирусов — процедура одновременного введения бакуловируса и вектора в клетки насекомых в культуре. [c.551]

    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Эукариотические гены одних видов были также клонированы и экспрессировались в клетках других видов. Например, ген, кодирующий tx-цепь гемоглобина кролика, был введен в растущие в культуре мышиные клетки и экспрессировался в них. Внедрение чужеродного гена в эукариотические клетки не всегда, однако, сопровождается его транскрипцией и трансляцией с образованием активного белка. Регуляция экспрессии генов у эукариот пока еще мало изучена (разд. 29.22) во время написания этой книги проводится большое число исследований по выяснению условий экспрессии реком-бинантньк генов в эукариотических клетках. [c.988]

    Дель многих опытов по клонированию состоит в наработке в большом количестве какого-либо белка эукариот. Именно для этого и встраивают гены эукариот в плазмиды бактерий, Чтобы достичь высокого уровня экспрессии гена, эукариотическую ДНК нужно встроить вблизи от активного промотора транск- [c.318]

    Экспрессионные векторы. Их используют для анализа конкретных последовательностей генов и их белковых продуктов, а также наработки конкретного белка. Существует огромное количество экспрессионных систем, особенно для прокариотических организмов. Есть также векторы для экспрессии генов в клетках дрожжей, растений и млекопитающих. Экспрессионные векторы для эукариотических организмов всегда содержат так называемую экспрессионную кассету, состоящую из промотора, способного работать в данном организме и сайта полиаденилирования. [c.36]


Смотреть страницы где упоминается термин Ген эукариотические, экспрессия: [c.84]    [c.122]    [c.151]    [c.70]    [c.146]    [c.151]    [c.154]    [c.437]    [c.437]    [c.162]   
Биохимия человека Т.2 (1993) -- [ c.37 ]

Биохимия человека Том 2 (1993) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Бактерии экспрессия эукариотических генов

Клонирование ДНК-копий эукариотических матричных РНК и их экспрессия в клетках Экспрессия в Е. oli химико-ферментативно синтезированных ген-эквивалентов эукариотических полипептидов

Механизмы экспрессии генов прокариотических и эукариотических организмов

Молекулярная организация, экспрессия и регуляция эукариотических генов Структура эукариотических генов и их экспресПрерывистые гены

Структура и регулируемая экспрессия эукариотических генов

Экспрессия клонированных эукариотических генов в клетках

Экспрессия хромосомных эукариотических генов в клетках



© 2024 chem21.info Реклама на сайте