Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрические измерения концентраций Фотоэлемент

    Спектрофотометрический анализ. Наиболее совершенным и сложным фотометрическим прибором является спектрофотометр. Ослабление интенсивности светового потока в спектрофотометре измеряется с помощью фотоэлементов. Однако в отличие от фотоэлектроколориметров спектрофотометры дают возможность применять строго монохроматический свет для проведения фотометрических измерений. Достигается это с помощью специальной призмы, которая разлагает белый свет в спектр, и щелевого устройства. Все это позволяет выделить очень узкий участок спектра с определенной длиной волны. Измерение светопоглощения в узком участке спектра дает более строгую пропорциональность между концентрацией исследуемого окрашенного соединения и численным отклонением показания прибора. Рассмотрим это положение на конкретном примере. [c.339]


    Из уравнения (5) следует, что при пропускании 36,8% ошибка в определении пропускания, равная 1%. вызывает ошибку в определении концентрации, равную 2,72%. Поскольку минимум на кривой, выражающей зависимость между ошибкой в результате анализа и пропусканием, имеет плоскую форму, оптимальный диапазон значений процента поглощения следует полагать равным 30—60%. Ошибка в определении концентрации 0,5% вызывается ошибкой в определении пропускания, не превышающей примерно 0,2%. Подобная точность может быть обеспечена при использовании рационально сконструированного фотометра с вентильным фотоэлементом. С вакуумным фотоэлементом и ламповым вольтметром была достигнута точность фотометрических измерений в пределах от 0,03 до 0,05% [8]. [c.636]

    При различных методах, связанных с измерением слабых сигналов на сильном фоне, большое значение имеют приемы так называемых дифференциальных измерений. При этом например сигнал испытуемой системы сравнивается с сигналом такой же системы, содержащей точно известное количество определяемого вещества, которое близко к содержанию его в исследуемой системе. Если фон постоянен во время опыта, но меняется от пробы к пробе, то применяют различные приемы компенсации таких изменений. Так, если при фотометрическом определении компонента А мешает компонент В собственной окраской, то испытуемый раствор сравнивают против такого же раствора, к которому прибавлены те же реактивы и дополнительно введено вещество, маскирующее определяемый компонент А. При этих условиях изменяющееся содержание мешающего компонента В компенсируется его изменением в растворе сравнения. Аналогично этому в пламенной фотометрии при определении кальция, которому мешает натрий, включают устройство со вторым фотоэлементом, который дает противоток, зависящий от концентрации мешающего элемента. Подобные приемы, правильно учитывая значение фона, позволяют увеличить чувствительность методов. [c.33]

    Для определения тонкости отсева (размера наиболее крупных частиц в фильтрате) может быть применен оптический метод, основанный на принципе осаждения. Очевидно, что оптическая плотность суспензии на некоторой глубине должна оставаться неизменной пока не осядут наиболее крупные частицы твердой фазы. После, прохождения через слой крупных частиц оптическая плотность суспензии начнет уменьшаться. С окончанием осаждения наиболее мелких частиц оптическая плотность достигает неизменного минимального значения. Время от начала осаждения, в течение которого оптическая плотность остается неизменной, является искомым временем для определения размера наиболее крупных частиц в суспензии. По времени от начала осаждения до момента достижения минимальной оптической плотности можно определить размеры наиболее мелких частиц в суспензии. Для определения тонкости отсева материалов по изменению оптической плотности фильтратов может применяться фотокалориметр ФЭК-М, который предназначен для измерения концентрации растворов но интенсивности их окраски. Принципиальная схема фотокалориметра показана на фиг. 16. Здесь источник света / через систему конденсоров, зеркал, теплозащитных стекол и светофильтров 2 посылает световые потоки на два селеновых фотоэлемента 6 вентильного типа. Величина одного светового потока падающего на фотоэлемент регулируется фотометрическими клиньями 4, величина другого светового потока регулируется с помощью щелевой диафрагмы 5. Фотоэлементы включены дифференциально, поэтому при равенстве световых [c.47]


    Колориметрические определения основаны на сравнении поглощения или пропускания светового потока стандартным и исследуемым окрашенными растворами. В практике преобладает фотоколориметрия, где для измерений используются фотоэлементы, так как визуальные измерения менее объективны. В основе метода лежит объединенный закон Бугера — Ламберта — Бэра (см. с. 6). Полученная по экспериментальным данным зависимость А=1(с) в виде прямой или кривой (при отклонении от закона Бэра) может далее служить калибровочным графиком. При помощи этого графика по оптической плотности раствора определяется концентрация данного компонента в растворе. Недостаточная монохроматичность поглощаемого светового потока обычно вызывает отрицательные отклонения от закона Бэра тем большие, чем шире интервал длин волн поглощаемого светового потока. Поэтому для увеличения чувствительности и точности фотометрического определения на пути светового потока перед поглощающим раствором помещают избирательный светофильтр. Светофильтры (стекла, пленки, растворы) пропускают световой поток только в определенном интервале длин волн с полушириной пропускания Я1У2макс—Я 1/2 макс- Этот интервал Характеризует размытость максимума пропускания (рис. 155). Чем он уже, тем выше избирательность применяемого светофильтра к данным длинам волн. [c.361]

    Концентрация растворов подбирается так, чтобы значение оптической n. zoTHO TH в максимуме полосы попадало в оптимальный интервал фотометрических измерений, который для большинства современных двухлучевых приборов с фотоумножителем в качестве приемника составляет 0,3...1,5, а на однолучевых приборах с фотоэлементами его пределы лежат несколько ниже 0,15...0,8). Растворы готовят обычным образом в мерных колбах, беря, насколько возможно, точные навески образца. При использовании кювет с толщиной слоя 10 мм и значении коэффициента экстинкции е порядка 10 ... 10" обычные концентрации растворов составляют 10 р-д- (или 10 м-л" ), т. е. для приготовления 10 мл раствора требуются менее чем миллиграммовые массы образца (при молекулярной массе порядка 10 ). [c.338]

    В фотометрическом анализе определяемый компонент переводят в окрашенное или, вообще, в поглощающее свет соединение количество продукта реакции определяют по поглощению света. Во всяком фотометрическом определении главное внимание должно быть уделено выбору и правильному выполнению химической реакции образования окрашенного соединения. Эта часть операций является общей для всех фотометрических методов анализа. Конечная стадия — измерение количества (концентрации) окрашенного продукта реакции — может быть выполнена разными методами в зависимости от наличия в лаборатории приборов или от технических условий. Различают несколько способов измерения концентрации окрашенного продукта реакции. Наиболее важными из них являются а) колориметрическое определение — когда визуально сравнивают цвет или интенсивность окраски испытуемого раствора с цветом или интенсивностью окраски стандартного раствора б) спектрофотометрия — измерение светопоглощения (оптической плотности раствора) при некоторой определенной длине волны или в узком интервале длин волн. Промежуточное место занимают измерения на приборах с фотоэлементами (фотоэлектроколориметрами), снабженными светофильтрами или на приборах типа фотометра Пуль-фриха, где наблюдение ведут визуально, но в некоторой узкой области спектра. [c.232]

    Для более резкого изменения потенциала индикаторного электрода рекомендуются [316] следующие условия температура раствора — не выше 25° С, раствор должен содержать не менее 25 мл 25%-НОГО раствора аммиака и не менее 5 г аммонийных солен на каждые 100 мл раствора, а также лимонную кислоту. Количество кобальта не должно превышать 0,05 г, а концентрация феррицианида калия не должна быть ниже 0,05 N, так как более разбавленные растворы дают растянутую кривую титрования без резкого перегиба. Предложены и другие методы. Длугач и Резник [104] разработали фотометрический метод фиксации точки эквивалентности, основанный на измерении оптической плотности титруемого раствора селеновым фотоэлементом аммиачный раствор соли кобальта титруют феррицианидом калия, прибавляя немного индигокармина, обесцвечивающегося в конце титрования. Описаны амперометрические методы [498] с ртутным капельным электродом [312] или твердым вращающимся платиновым электродом [117, 313, 395] в последнем случае точку эквивалентности находят по току восстановления избытка феррицианида при потенциале —0,2 в (по отношению к насыщенному каломельному электроду). Известен метод амперометрического титрования с двумя платиновыми электродами [735, 909] и др. [818]. [c.109]



Смотреть страницы где упоминается термин Фотометрические измерения концентраций Фотоэлемент: [c.90]   
Руководство по газовой хроматографии (1969) -- [ c.153 , c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрация измерение

Ток фотоэлемента, измерение

Фотоэлемент



© 2024 chem21.info Реклама на сайте