Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высшие организмы

    Полимеры производных гексозы служат для построения наружных покровов насекомых (хитин) и клеточных стенок бактерий. В хитине производное гексозы, называемое К-ацетилглюкозамином, полимеризуется без образования поперечных связей. Один из слоев стенки клеток бактерий представляет собой полимер производных гексозы, который укреплен поперечными связями из коротких цепей четырех аминокислот. Человек и все остальные высшие организмы вырабатывают фермент лизоцим, который защищает их, растворяя полисахаридные стенки клеток патогенных (вызывающих болезни) бактерий. Лизоцим содержится в большинстве таких вьщелений, как пот или слезы. О-Аминокислоты обнаруживаются в живых организмах крайне редко, например их находят [c.312]


    Какая стадия метаболизма энергии высших организмов присуща всем формам жизни Сколько молей АТФ получается из 1 моля глюкозы только на этой стадии Во сколько раз продуктивнее весь метаболический процесс высших организмов  [c.344]

    Интересно, что некоторые ионофоры содержат аминокислоты с D-конфигурацией. Такого не было обнаружено в высших организмах. [c.282]

    Интенсивность процесса обмена веществ у высших организмов зависит от возраста организма чем моложе организм, тем больше он содержит воды и тем интенсивнее его обмен веществ. Например, эмбрион человека ко второму месяцу развития содержит 97% воды, новорожденный ребенок — 74%, организм взрослого человека содержит 63—68% воды. Та же закономерность проявляется и в отношении отдельных тканей и органов животного организма особенно богаты водой те органы, которые наиболее интенсивно функционируют. Так, сердце высших животных содержит 79% воды, а скелет —всего лишь 20—40 /о- [c.46]

    В процессе дыхания микробы, как и высшие организмы, получают энергию, необходимую для роста, размножения и движения. Следовательно, все жизненные процессы в их теле совершаются [c.260]

    Исследование биоритмов у высших организмов (П. К. Анохин, [c.339]

    Сравнение скорости образования биомассы микроорганизмами и высшими организмами ио показателю времени удвоения дано в табл. 1.1 [1]. В реальных условиях рост клеток ограничивается наличием лимитирующих и ингибирующих факторов, снижающих величину удельной скорости роста микроорганизмов [19]. [c.8]

    Расширение применения ингибиторов коррозии, старения и биоповреждений, в том числе обладающих значительным физиологическим действием на животных и человека (детергенты, производные бензола и т. п.), ведет к накоплению их в воздухе, воде, земле,, и воздействию на высшие организмы. Они могут оказывать и косвенное влияние. Накапливаясь в водоемах до концентраций 0,001... г/л, такие вещества тормозят процессы биохимического потребления микроорганизмами кислорода. Изменяются сроки выживания сапрофитных микроорганизмов. Нарушается равновесие самоочищения воды от органических загрязнений, создаются условия развития патогенных бактерий [43, с. 277]. [c.109]

    У высших организмов Д.-сложный комплекс физиол. и биохим. процессов, в к-ром можно выделить ряд осн. стадий. I) внеш. Д. поступление Oj из среды в организм, осуществляемое с помощью спец. органов Д. (легких, жабр, трахей и т.д.) или через пов-сть тела (напр., у кишечнополостных) 2) транспорт О2 от органов Д. ко всем др. органам, тканям и клеткам у большинства животных эта ф-ция обеспечивается кровеносной системой при участии спец. белков переносчиков кислорода (гемоглобин, миоглобин, гемоцианин и др.) 3) тканевое, или клеточное, Д. собственно биохим. процесс восстановления О2 в клетках при участии большого числа разных ферментов. Д. многих, в первую очередь одноклеточных, организмов сводится к клеточному Д., а стадии 1 и 2 обеспечиваются диффузией Ог- [c.124]


    У др. бактерий и высших организмов Т. связана с мембраной и ее активность сопряжена с переносом Н" через мембрану. Константа равновесия р-ции в этом случае зависит от разности электрохим. потенциалов Н" по разные стороны мембраны и достигает величины 500. [c.618]

    Живые системы потребляют такие простые вещества, как кислород, вода, диоксид углерода, а высшие организмы — и такие сложные вещества, как белки, углеводы, жиры, витамины и минералы. В результате усвоения этих веществ происходит выделение энергии и внутри организма образуются новые вещества и, как правило, побочные продукты (вода, кислород, диоксид угле- [c.477]

    Бактерии крайне разнообразны по химическому составу и характеру обмена веществ, поэтому разработать их рациональную классификацию очень трудно. Для высших организмов понятие виды можно определить как нескрещивающиеся формы. Б случае бактерий этот критерий лишен смысла, поэтому подразделение их на виды и роды нередко произвольно. Используемая в настоящее время схема (табл. 1-1) делит царство прокариот на 19 групп. В основу деления положены различные признаки, включая форму, отношение к красителям и химические свойства. В таблицу включены названия родов всех бактерий, упоминаемых в тексте книги. [c.23]

    Как видно из таблицы, у дрожжей количество генетического материала примерно в 5 раз больше, чем у Е. соИ, а у человека (и мыши) — в 600 раз. Нужно сказать, однако, что у высших организмов гены нередко дублированы и в клетке присутствуют многократно повторяющ,иеся( последовательности ДНК. Функция таких повторов неизвестна (у некоторых амфибий содержание ДНК в расчете на одну клетку в 25 раз-, больше, чем у человека). Уотсон [10] высказал предположение, что-количество собственно генетического материала в клетках позвоночных по крайней мере в 20—50 раз выше, чем у Е. соИ. Следовательно, число, генов в клетке человека составляет величину порядка 10 . [c.28]

    Диплоидные клетки большинства высших организмов содержат одну пару хромосом, которые, помимо всего прочего, определяют пол особи. У женщин клетки содержат пару Х-хромосом , а у мужчин — одну Х-хромосому и парную ей короткую, похожую на обрубок Y-хромо-сому . [c.42]

    Для клеток высших организмов совершенно необходимо уметь узнавать другие клетки, чтобы выяснить, являются ли они идентичными, принадлежат ли другим тканям или же чужеродны . [c.60]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    В состав высших организмов, обитающих в морях, входит вода в количестве 80% и больше. Содержание жиров составляет в среднем около 7% от живого веса (рыб). Если представить себе, что эти жиры превратились в нефть хотя бы на 50%, получается, что для образования одной тонны нефти необходимо около 140 т живого вещества. Между тем нигде в природе не приходилось наблюдать такого массового скопления живого вещества. Если где-либо и наблюдается массовая гибель рыб, например, вследствие подводных вулканических извергкений, отравляющих воду, а так ке эпидемий или смены соленой воды пресной, то погибшие рыбы становятся "пищей для различных микроорганизмов, быстро разрушающих остатки организмов. [c.190]

    ГЕН, участок молекулы ДНК (у нек-рых вирусов — РНК), в к-ром закодирована информация, обеспечивающая развитие определ. признака (св-ва) у данного организма и его передачу в ряду поколений. Участки нуклеиновой к-ты, кодирующие аминокислотную последовательность белков нли последовательность оснований транспортных и рибо-сомных РНК, наз. структурными Г. Последние вместе с необходимыми для их функцион. выражения регуляторными участками объединяются в более сложные генетич. еднинцы — опероны. Многие Г. высших организмов имеют прерывистое строение кодирующие части гена (зкзоны) чередуются с некодирую1цими вставками (интронами). в Стен т Г. С., Молекулярная -енетыка, пер. с англ.. М., 1974, [c.125]

    Изучение частот рекомбинаций между различными штаммами фагов вскоре показало, что некоторые сайты мутаций тесно сцеплены друг с другом. Рекомбинация между такими сайтами происходит редко. Другие же сайты сцеплены слабо друг с другом, и рекомбинации между ними происходят часто. Эта ситуация напоминает обнаруженную на много лет раньше ситуацию с генами плодовой мушки (дрозофилы)кукурузы и других высших организмов. Главная идея, на которой основано картирование хромосом любого организма, состоит в предположении, что частота реком- РИС. 15-20. Стерильные пятна, образованные бак- [c.249]


    Большинство клеток высших организмов обычно имеет диплоидный набор хромосом, однако в некоторых из них набор хромосом может быть удвоен или увеличен в еще большее число раз. Клетка, в которой число хромосом увеличено по сравнению с диплоидным в два раза, называется тетраплоидной, а в большее число раз — полиплоидной. Селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки. Некоторые из них, например, обнаруживаются в печени. Наиболее выразительным примером увеличения содержания ДНК в клетке могут служить гигантские политенные хромосомы личинки двукрылых. ДНК клеток слюнных желез и некоторых других частей этих личинок может удваиваться без деления клетки приблизительно в 13 раз, причем количество ДНК может возрастать при этом в несколько тысяч раз (например, в 2 раз). Сусперсппрализованные удвоенные молекулы ДНК располагаются ря-до.м друг с другом в более вытянутой форме, чем в обычных хромосомах. Общая длина четырех гигантских хромосом дрозофилы составляет приблизительно 2 мм, тогда как в обычной диплоидной клетке их длина равна 7,5 мкм. Гигантские хромосомы имеют поперечнополосатую структуру по всей длине хромосомы можно видеть приблизительно 3000 поперечных дисков. Поскольку было установлено наличие корреляции между видимыми изменениями дисков I и коакретиыми [c.267]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    Геном высших организмов состоит из определенного числа отдельных хромосом, каждая из которых содержит, по-видимому, одну двухцепочечную молекулу ДНК. Эта молекула ДНК тесно связана с другими компонентами, в состав которых входит примерно 75% белка и 10% РНК (гл. 1, разд. Б,2). До недавнего времени мало что можно было сказать о том, как устроены хромосомы. Однако известно, что в профазе митоза или мейоза вытянутые хромосы иногда выглядят как нитки бус. Маленькие, богатые ДНК бусинки, известные под названием хромомер, подобно дискам политенных хромосом дрозофилы (разд. Г, 9, в), можно рассматривать как своего рода единицы генетической информации. Их существование дает основание думать, что ДНК в хромосоме каким-то образом разделена на отдельные единицы, возможно, аналогично оперонам бактерий. [c.296]

    Необычный компонент клеточных ядер всех высших организмов образуется путем полимеризации АОР-рибозильных групп, образующихся из ЫАВ+. Специальный фермент, катализирующий процесс полимеризации, вытесняет никотинамид и образует гликозидную связь между атомом С-1 рибозы, с которым был связан ннкотинамид, и атомом С-2 АОР-компонента следующей мономерной единицы. Значение по- [c.304]

    Монопиррольные соединения широко распространены в природных источниках, но обычно содержатся в следовых количествах. Они найдены в микроорганизмах, растениях и высших организмах, многие из них обладают свойствами [c.262]

    В высших организмах присутствует белковый комплекс, осуществляющий специфич. перенос через биол. мембраны АТФ в обмен на АДФ (транслоказа адениновых нуклеотидов) и являющийся первым хорошо изученным белком-пе-реносчиком. Особая роль аденозин-5 -фосфорных к-т в биоэнергетике обусловливает то, что эти соед. являются также аллостерич. регуляторами ряда ключевых ферментов. [c.34]

    Г-н. стала основой развития молекулярной генетики. Благодаря возможности клонирования чужеродных генов в бактериях, животных и растит, клетках (выделеньг клоны мн. генов рибосомной РНК, гистонов, интерферона и гормонов человека и животных и т. п.), Г. и. имеет прикладное значение. Она составляет, наряду с клеточной инженерией, основу совр. биотехнологии. С помощью методов Г. и. получены мн. иовые, иногда неожиданные данные, открыто, напр., мозаичное строение генов у высших организмов, изучены транспозоны бактерий и мобильные диспергированные элементы высших организмов, открыты онкогены и т.п. (см. Мигрирующие генетические элементы). [c.518]

    ГЕНОМ, совокупность генов, локализованных в гаплоидном наборе хромосом данного организма. Половые клетки (т. наз. гаплоидные) содержат один Г., соматич. клетки высших организмов (т. наз. диплоидные)-два один Г. отцовский, другой - материнский. [c.519]

    Г. человека сосгоит из 23 хромосом и содержит примерно 3 10 нуклеотидных пар. Г. бактерий представлен единств, кольцеюй хромосомой, связанной с клеточной мембраной. Строение ее намного проще, чем у высших организмов. Так, ДНК генома ишечной палочки состоит из 3,8-10 нуклеотидных пар. Г. наиб, примитивных вирусов состоит из молекулы ДНК или (в нек-рых случаях) РНК, имеющих линейную или кольцевую форму. У более сложных вирусов обнаруживаются черты структурной организации, характерные для хромосом высших организмов. [c.519]

    Бактериальный Г. содержит в осн. неповторяющиеся гены лишь немногие гены, напр, кодирующие рибосо-мальные РНК, присутствуют в бактериальном Г. в виде неск. копий. В Г. высших организмов по степени повторяемости выделяют три осн. типа нуклеотидных последовательностей высокоповторяющиеся (до 10 копий), умеренно повторяющиеся (10 -10 копий) и уникальные. Последние м.б. представлены одной или неск. копиями. В эту фракцию входит подавляющее число генов, кодирующих белки. Повторяющиеся последовательности обычно составляют в зависимости от вида организма 10-70% всего Г. Их, как правило, меньше у низкоорганизованных организмов и больше у высших. Выяснены ф-ции лишь очень малой части всех повторов. Особую фракцию Г. составляют мигрирующие генетические элементы. [c.519]

    Законная Р. г. обычно сайт-неспецифична, хотя довольно часто у бактерий и высших организмов она может проявлять черты сайт-специфичности, т. е. избирательности к определишым нуклеотидным последовательностям ДНК (т. наз. горячие точки рекомбинации). Такие последовательности резко повышают частоту Р. г. в тех участках генома, в к-рых они локализованы. Незаконная Р. г. может быть как сайт-неспецифичной, так и весьма специфичной относительно участка обмена. [c.229]

    Фермент состоит из 4 субъединиц с мол. массами ок. 70, 30, 14 и 12 тыс. и содержит в качестве окислит.-восстановит. групп флавинадениндинуклеотид (ковалентно связанный с самой тяжелой субъединицей) и 3 Fe-S-кластера (ассоциированных с субъединицей с мол, м. 30 тыс.). Одна из малых субъединиц С. высших организмов и фумаратредук-тазы микроорганизмов содержит гем. Активный центр, связывающий сукцинат, локализован на самой тяжелой субъединице, а центр, связывающий убихинон,-в субъеди-нш(е с мол, м, 12 тыс, В специфич, связывании сукцината участвуют остатки аргинина, гистидина и цистеина. С. проявляет оптим. каталитич. активность при pH 7,5-8. Установлены первичные структуры субъединиц с мол. м. 70 и 30 тыс. [c.451]

    Физиол. роль Т. у высших организмов состоит в йод-держании достаточного отрицат. окислит.-восстановит. потенциала пары НАДФ/НАДФН благодаря энергии, продуцируемой в сопрягающих мембранах, и регуляции тем самым р-ций с участием этих коферментов. [c.618]

    Среди плоских червей имеется много паразитических форм (трематоды и ленточные черви), поражающих высшие организмы. Так, крошечные черви рода S histosoma передаются человеку через улиток и повреждают кровеносные сосуды. Возникающий при этом шистосомоз в настоящее время представляет собой одно из наиболее распространенных заболеваний, которым страдают более 200 млн. человек. [c.52]

    Диапазон изменений нуклеотидного состава ДНК на удивление широк. Суммарное процентное содержание цитозина и гуанина (G -содержа-ние) в различных бактериях меняется от 22 до 74%. (G -содержание в ДНК Е. oli равно 51,7%). Для эукариот этот диапазон более узок (от 28 до 58%). Тот факт, что у бактериальных ДНК нуклеотидный состав меняется в гораздо более широких пределах, чем у высших организмов, удивления не вызывает. Прокариоты существуют на Земле почти столько же миллионов лет, сколько и мы. Но из-за их более простой структуры и высокой скорости деления природа совершила над их генетическим материалом значительно больше экспериментов и внесла в него значительно больше изменений, чем в наш. [c.138]

    РИС. 2-33. Жизненно важные для живых организмов элементы [102] (они расположены в закрашенных клетках). 11 элементов — С, Н, О, N. 5, Р, N3, К, М , Са и С1 — составляют 99,9% массы тела человека. Для жизнедеятельности высших организмов необходимо присутствие в следовых количествах еще 13 элементов. Высшим растениям необходим бор для животных, микроорганизмов и водорослей этот элемент, по-видимому, иеобязателеи. [c.155]


Смотреть страницы где упоминается термин Высшие организмы: [c.58]    [c.160]    [c.125]    [c.10]    [c.125]    [c.136]    [c.139]    [c.303]    [c.626]    [c.253]    [c.259]    [c.184]    [c.32]    [c.247]    [c.91]    [c.451]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Гена у высших организмов

Клетки высших организмов становятся специализированными и взаимозависимыми

Компартменты в клетках высших организмов

Культуры клеток высших организмов

Организмы высшие в сравнении с низшими

Передача вирусов с помощью организмов, пе принадлежащих к высшим растениям

Сложный митотический процесс высших организмов - это результат постепенного совершенствования механизма деления прокариот

У высших животных яйцеклетка-это единственная клетка, из которой может развиться новый организм



© 2025 chem21.info Реклама на сайте