Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный центр ферментов лизоцима

    Поскольку индольная флуоресценция триптофана наиболее интенсивна среди природных аминокислот, она в основном ответственна за флуоресценцию большинства белков и находит различные применения в биологии и медицине, например в качестве пробы для выяснения структурных и конформационных изменений в белках, оценки совместимости антител в иммунологии и выяснения механизма действия ферментов [136, в, 15]. Примером, в частности, может служить гидролаза — лизоцим, содержащий шесть остатков триптофана, в том числе три, по-видимому, ассоциированы с активным участком. Присоединение субстрата приводит к голубому смещению в эмиссионном спектре на 10 нм, от 335 к 325 нм, сопровождающемуся повышением квантового выхода. Такое поведение интерпретируется как указание на взаимодействие между карбоксильными и индольными группами активного центра, которое исчезает при присоединении к субстрату [16]. [c.494]


    Лизоцим — фермент бактериолитического действия. Иначе говоря, реакции, катализируемые лизоцимом, приводят к лизису (растворению) определенных бактериальных клеток. Поэтому изучение механизмов действия фермента, топографии его активного центра и кинетических особенносте реакций лизоцима целесообразно начать с описания структуры его специфического субстрата — пептидогликана (гликопептида или муреипа) бактериальной клеточной стенки. Сравнительно недавно постановка вопроса в таком виде звучала буквально фантастически, поскольку химическая структура гигантских макромолекул, образующих скелет клеточной стенки, была совершенно неизвестна. Однако благодаря работам большой группы исследователей, в первую очередь Солтона, Строминджера, Гуйсен, за последние 15—20 лет ситуация значительно изменилась, и к настоящему времени многие важные особенности структуры бактериальных клеточных стенок достаточно хорошо изучены. [c.139]

    Атомы многих металлов также стабилизируют пространственную конформацию ферментных и иных белков. Таким действием обладают катионы Са, 2п, Мп, Mg, Со, Сп, Ре + 2, иногда Ва и также трехзарядные катионы. Они обеспечивают сохранение третичной и (или) четвертичной структуры ферментов. Особенно часто встречается стабилизирующее действие иона кальция, который защищает конформацию а-амилазы, предохраняет от денатурации (и автолиза) трипсин, защищает лизоцим, бактериальные и грибные протеиназы, некоторые пептидазы. Металл, по-видимому, может стабилизировать фермент двумя путями входя в состав его активного центра (у истинных метал-лоэнзимов) или присоединяясь к различным иным участкам на поверхности белковой частицы. При стабилизации апоферментов, например ионами Са, вероятно образуются клешневидные связи между металлом и СОО-группами. [c.166]

    Л<с. 4.4. Созданные на компьютере модели третичной структуры лизоцима до и после присоединения субстрата, показывающие, как работает этот фермент. А. Вид сбоку. Активный центр имеет форму щели, проходящей по всей толще молекулы. Б. Вид сбоку. Активный центр с находящейся в нем молекулой субстрата. Обратите внима -ние на некоторое изменение формы фермента, вызванное присоединением субстратй. Это пример индуцированного соответствия , постулированного Кошландом в 1959 г. Субстрат лизоцима представляет собой короткую олигосахаридную цепь, легко умещающуюся в активном центре и расщепляемую ферментом. Такие олигосахариды входят в состав бактериальных клеточных стенок и их разрушение влечет за собой гибель бактерий — клеточные стенки утрачивают присущую им жесткость и клетки лопаются под действием осмотических сил. Лизоцим — широко распространенный фермент, выполняющий защитную функцию он содержится в слезах, слюне и в слизи носовой полости. В. Вид спереди. Активный центр с находящейся в нем молекулой субстрата. Г. Компьютерная модель лизоцима с субстратом в активном центре. [c.156]


    Рнс. 95. Фрагмент структуры бактериального полисахарида — субстрата лизоци-ма. Пока-шны водородные связи, образующиеся при связывании субстрата в активном центре фермента. [c.189]

    Первым ферментом, пространственное строение которого было подробно изучено с помощью рентгеноструктурного анализа с разрешением до 2 A, позволяющим установить расположение всех тяжелых атомов в молекуле, оказался лизоцим яичного белка [16, 33]. Лизоцим представляет собой глобулярный белок с молекулярным весом около 14 ООО, содержащий 129 аминокислотных остатков. Пространственное строение молекулы поддерживается четырьмя дисульфидными и многочисленными гидрофобными и водородными связями. На рис. 26 приведена модель глобулы фермента с разрешением 6 A, схематически показано расположение молекулы субстрата в фермент-субстратном комплексе и приведена первичная структура молекулы. На этом рисунке изображены аминокислотные остатки, образующие поверхность щели — активного центра молекулы. Необычная форма ферментной глобулы, как бы разделяемой глубокой щелью на две неравные части, связана со строением субстрата фермента длинноцепочечных муконолисахаридов, построенных из чередующихся остатков N-аце-тилглюкозамина (АГА) и N-ацетилмураминовой кислоты (AMA), соединенных (1—4) гликозидными связями. Полимерный субстрат адсорбируется ферментом на отрезке, содержащем 6 остатков сахара, причем гидролизу подвергается только одна р-гликозидная связь между четвертым D и пятым Е остатками сахара. Положение разрываемой [c.110]

    Несмотря на некоторое сходство, эти два белка имеют совершенно разную конформацию, что еще раз подчеркивает важную роль аминокислотной последовательности и размера цепи в определении конкретной структуры. Рассмотрим сначала лизоцим (129 остатков), морфология которого может быть описана вытянутым эллипсоидом (45 х 30 х 30 А) с удаленной клинообразной областью. Образовавшаяся щель представляет собой активный центр фермента. Молекула содержит лишь небольшое число участков, подобных а-спирали (остатки 5 — 15, 24 — 34, 88 — 96), и несколько более коротких участков, остатки которых имеют почти такие же углы фиф, как и у а-спирали или 3,о-спирали . Важная особенность структуры — наличие -слоя (рис. 5.18). Он образован тремя антипараллельными цепями (остатки 42 — 48, 49 — 54 и 57 — 61), связанными водородными связями, в которых участвуют амидные и карбоксильные группы, а также атомы боковых цепей серина, треонина, аспарагина и глутамина. Некоторые из перечисленных боковых групп принадлежат не остаткам самого -слоя, а остаткам, расположенным дальше по цепи. Считается, что эта 3-структура играет очень важную роль в определении нативной конформации фермента и ее стабилизации. Сомнительно, однако, чтобы указанная область со столь большим числом поперечных водородных связей была так же важна для формирования структуры в целом, как гидрофобные взаимодействия, поскольку сама молекула белка может денатурировать в водном растворе мочевины. [c.275]

    Дальнейший анализ основан на модели, близкой теории Дебая— Хюккеля для растворимости белков или для взаимодействия ингибитора с активным центром [23]. Предварительным условием дальнейших рассуждений является требование, что фермент не должен обнаруживать никакого притяжения к поверхности геля. Это, например, не соблюдается для системы лизоцим — сефароза. [c.96]

    Лизоцим в зависимости от условий кристаллизуется с образованием ряда полиморфных форм — тетрагональной, триклииной, моноклинной, орторомбической [29, 30]. Наиболее известна тетрагональная структура, с использованием которой и было получено большинство рентгеноструктурных данных. По мнению самого Филлипса [5], тетрагональная структура кристаллического лизоцима имеет один серьезный недостаток — молекулы фермента в ней подходят друг к другу особенно плотно и взаимодействуют в области участков Е и Р активного центра, что не позволяет наблюдать связывание сахаров с данными участками без разрушения кристаллов. Это, видимо, стимулировало изучение других кристаллических форм лизоцима [29—31], хотя и без особого успеха в выявлении новых деталей строения активного центра и механизма его действия. Более того, выяснилось, что триклигшый лизоцим еще менее пригоден в данном отношении для исследований, поскольку у него в кристаллической ячейке взаимно блокированы три участка активного центра — О, Е и Е [32, 33]. По предварительным данным, моноклинная и орторомбическая формы кристаллического лизоцима страдают тем же недостатком [34, 34а]. В настоян ее время надежды возлагаются на лизоцимы из других источников, такие как лизоцим из белка яиц черепахи [34], четвертичная структура которого практически идентична лизоциму из белка куриных яиц, но кристаллы содержат аномально большое количество воды. Возможно, и этом случае активный центр фермента будет более доступен для аналогов субстрата и эффекторов и соответствующий рснгеноструктурный анализ приведет к более определенным выводам о топографии связывающих участков активного центра. [c.154]


    Первым ферментом, у которого была выяснена третичная структура и каталитические свойства которого были рассмотрены на основе знания расположения атомов в активном центре, был лизоцим. Его химическое строение установлено П. Жолле в 1962 г., а несколько позднее Р. Кенфилдом. Фермент, выделенный из яичного белка, представляет собой одну полипептидную цепь из 129 аминокислот. Расшифровка структуры белка была начата Филлипсом и соавт. в 1960 г. через два года было получено изображение с малым разрешением 6,0 А [212-214]. В 1965 г. выполнен расчет структуры при учете около 10 ООО рефлексов с разрешением в 2,0 А [215-218]. Трехмерная структура лизоцима имеет форму эллипсоида с осями 45 х 30 х 30 А. Она содержит лишь несколько коротких, сильноискаженных и с трудом узнаваемых спиральных участков (рис. 1.3). Пептидные группы в них, как правило, повернуты таким образом, что связи С=0 направлены наружу по отношению к оси спирали, а Н-Н - внутрь. В результате такого поворота связи К-Н попадают в промежуток между карбонильными группами третьего и четвертого остатков и, следовательно, не образуют оптимальных водородных связей. В ряде мест пептидная цепь скручена таким образом, что получается структура, промежуточная между а-спиралью и спиралью Зц). В молекуле лизоцима имеется короткий участок антипараллельной (3-структуры. Более половины всех аминокислотных остатков входят в полностью нерегулярные структуры. [c.50]

    Следует подчеркнуть, что лизоцим стал первым ферментом, для которого специально изучалась аддитивность сродства отдельных сайтов нри связывании олигосахаридов различной степени полимеризации и показано, что она отсутствует. Это важно учитывать при интерпретации результатов многочисленных работ, в которых щироко (и формализованно) используется принцип аддитивности сродства индивидуальных сайтов активных центров деполимераз. [c.201]

    Ниже будут рассмотрены четыре различных гидролитических фермента (химотрипсин, рибонуклеаза, лизоцим и карбоксипепти-др.за А) их изучение может служить примером использования различных экспериментальных подходов с целью выяснения структурно-функциональных особенностей ферментов. Для каждого из этих ферментов установлена первичная структура, выяснена структура активного центра и механизм связывания субстрата. Кроме того, детально изучены каталитические свойства этих ферментов, и на основе полученных данных предсказан вероятный механизм действия каждого из них. [c.298]

    Г.-белки с мол. м. от 10-15 тыс. до 200-300 тыс. Они проявляют свою каталитич. активность, как правило, в отсутствие к.-л. кофакторов лишь в нек-рых случаях необходимы ионы металлов-гл. обр. Zn " , Со " , Са , Mg " . Для небольшого числа Г. известна первичная, а для нек-рых и пространств, структура молекулы (напр., для лизоци-ма, пепсина, трипсина, химотрипсина). Отмечено значит, сходство структуры ферментов одного подкласса, особенно в области активного центра. Так, мн. протеиназы имеют в активном центре одинаковую последовательность аминокислот Gly Asp Ser Gly Gly Pro (обозначения см. в ст. Аминокислоты]. Близкое строение имеет и активный центр ряда эстераз. [c.561]


Смотреть страницы где упоминается термин Активный центр ферментов лизоцима: [c.188]    [c.240]    [c.138]    [c.300]    [c.152]    [c.300]    [c.127]    [c.127]   
Химия биологически активных природных соединений (1970) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активность фермента

Активные ферментов

Активные центры ферменто

Активный центр

Лизоцим



© 2025 chem21.info Реклама на сайте