Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки переносчики кислорода

Таблица 2.2. Некоторые свойства белков-переносчиков кислорода (по Г. Эйхгорну) Таблица 2.2. <a href="/info/219535">Некоторые свойства</a> белков-переносчиков кислорода (по Г. Эйхгорну)

    Транспортные белки Переносчики кислорода Гемоглобин (переносит [c.259]

    У высших организмов Д.-сложный комплекс физиол. и биохим. процессов, в к-ром можно выделить ряд осн. стадий. I) внеш. Д. поступление Oj из среды в организм, осуществляемое с помощью спец. органов Д. (легких, жабр, трахей и т.д.) или через пов-сть тела (напр., у кишечнополостных) 2) транспорт О2 от органов Д. ко всем др. органам, тканям и клеткам у большинства животных эта ф-ция обеспечивается кровеносной системой при участии спец. белков переносчиков кислорода (гемоглобин, миоглобин, гемоцианин и др.) 3) тканевое, или клеточное, Д. собственно биохим. процесс восстановления О2 в клетках при участии большого числа разных ферментов. Д. многих, в первую очередь одноклеточных, организмов сводится к клеточному Д., а стадии 1 и 2 обеспечиваются диффузией Ог- [c.124]

    Гемсодержащие белки - переносчики кислорода - являются удобными объектами для изучения внутримолекулярной динамики вследствие доступности и наличия рентгеноструктурных моделей. [c.556]

    РАСПРЕДЕЛЕНИЕ И ПРИРОДА БЕЛКОВ — ПЕРЕНОСЧИКОВ КИСЛОРОДА [c.141]

    Безошибочность свертывания цепи in vitro [94] проверяют путем сопоставления свойств нативного и ренатурированного белков в отношении биологической активности и специфичности [441]. Например, денатурированный различными способами переносчик кислорода — гемоглобин может быть вновь переведен в нативный белок, который а) имеет ту же растворимость, что и исходный белок, б) способен кристаллизоваться, в) имеет спектр поглощения, харак- [c.182]

    Сопоставление некоторых свойств белков — переносчиков кислорода [c.378]

    Орг. в-ва с помощью белка-переносчика попадают внутрь клеток микроорганизмов, где происходит окисление примесей, сопровождаемое выделением энергии и синтезом новых в-в с затратой энергии. Роль катализаторов превращений орг. примесей выполняют ферменты. Для разрушения сложной смеси орг. в-в необходимо 80-100 разл. ферментов. Микроорганизмы потребляют только растворенный в стоках кислород насыщение им воды осуществляют аэрацией. При очистке образуется избыток активного ила, к-рый утилизируют (см. ниже). [c.435]

    Белки — переносчики кислорода. В процессе эволюции в живых организмах появились специальные молекулы — переносчики кислорода, которые связывают и доставляют кислород к клеткам различных органов, где он используется в процессах биологического окисления веществ. В организме человека такими переносчиками служат два белка — гемоглобин и миоглобин. [c.243]

    Выявление мутаций белков-переносчиков кислорода оказало большое влияние на молекулярную биологию, медицину, генетику и антропологию. Мутантные гемоглобины используются в трех линиях исследований. [c.101]


    Разница заключается только в том, что у хлорофилла М = Мд +, а у гемоглобина — Ре +. Координационное число данных ионов равно б, поэтому по вакантным местам присоединяются еще две молекулы других веществ. Например, в гемоглобине по одну сторону хелата присоединяется молекула белка глобина, а по другую— молекула кислорода, благодаря чему это соединение является переносчиком кислорода в крови  [c.163]

    Хромопротеиды. Под этим названием известны протеиды, которые представляют собой сочетание белков с окрашенными веществами. Из хромопротеидов наиболее изучен гемоглобин— красящее вещество красных кровяных шариков. Гемоглобин, соединяясь с кислородом, превращается в оксигемоглобин, который, отдавая свой кислород другим веществам, снова превращается в гемоглобин. Значение гемоглобина в жизни человека и животных очень велико. Он играет роль переносчика кислорода от легких к тканям. Образовавшийся в легких оксигемоглобин кровью разносится по телу и, отдавая свой кислород, способствует протеканию в организме окислительных процессов. Кроме того, гемоглобин вместе с плазмой крови осуществляет регуляцию величины pH крови и перенос углекислоты в организме. [c.392]

    Железо играет весьма активную роль в жизнедеятельности любых организмов, связанную, прежде всего, с процессами переноса и обмена Оно входит в состав ферментов, катализирующих окислительно-восстановительные процессы, комплексов, служащих для передачи электронов, гемоглобина, являющегося переносчиком кислорода Велика роль железа в обмене нуклеиновых кислот, синтезе белков, в процессах фотосинтеза и дыхания растений, в других биохимических реакциях [c.499]

    Переносчиком кислорода в нескольких группах беспозвоночных, например в плодовых червях Sipun ulidoidea, служит белок, содержащий негемовое железо, гемэритрин [Иа]. Субъединицы этого белка, содержащие около ИЗ аминокислотных остатков, часто образуют октамеры с симметрией С4. В каждом мономере имеется активный центр, содержащий два атома Ре(П) на расстоянии 0,34 нм друг от друга. Считается, что молекула кислорода располагается между атомами железа, как указано на представленной ниже схеме (взятой из работы Клотца и др. [Иа])  [c.369]

    По формуле молекул белки могут быть фибриллярными, у которых отнощение длины к щирине больше 10 (образуют мыщцы, кожу, натуральный щелк и т. д.), и глобулярными. у которых отнощение длины к ширине меньше 10 (например, ферменты, промежуточные соединения обмена веществ, переносчики кислорода). [c.310]

    В ферменте имеется один или более участков, в которых происходит катализ за счет тесного контакта фермента с субстратом. Молекулярный вес субстрата обычно много меньше, чем молекулярный вес фермента. Активный центр состоит из немногочисленных реактивных групп — боковые цепи некоторых -аминокислот, амидные группы, остовы полипептидной цепи. В состав активных центров некоторых ферментов входят простетиче-ские группы — прочно связанные с белком группы неаминокислотной природы, принимающие непосредственное участие в акте каталитического превращения. Такие группы в целом ряде случаев не могут быть отделены от белка диализом. В состав белков — переносчиков кислорода (цитохрома С, миоглобина и [c.502]

    При недостатке Мо в тканях накапливается большое количество нитратов, не развиваются клубеньки на корнях бобовых, тормозится рост растений, наблюдается деформация листовых пластинок. Молибден, как и железо, необходим для биосинтеза легоглобина (леггемоглобина) - белка-переносчика кислорода в клубеньках бобовых. При дефиците молибдена клубеньки приобретают желтый или серый цвет, нормальная [c.254]

    Химический состав опорных тканей позвоночных отличается от состава скелетных тканей беспозвоночных — спонгина, хитина и др. В покровах позвоночных присутствует особый белок - кератин. Позвоночные отличаются от беспозвоночных и действием пищерастительных ферментов, более высоким отношением (Ма + К)/ Са + Мд) в жидкой фазе внутренней среды. Среди беспозвоночных только у оболочников есть целлюлозная оболочка, имеется ванадий в крови в особых окрашенных клетках, а у круглоротых - соединительно-тканный скелет и хрящ, а также особый дыхательный пигмент — аритрокруорин с наименьшей для позвоночных молекулярной массой (17 600). Отличительная черта сипункулид — древних групп морских беспозвоночных - наличие специального переносчика кислорода - гемэритрина и наличие в эритроцитах значительного количества аллантоиновой кислоты. Для насекомых характерно высокое содержание в крови аминокислот, мочевой кислоты и редуцирующих и несбраживаемых веществ, в хитиновом покрове отсутствуют смолы, для членистоногих — наличие специфической (только для их групп) фенолазы в крови. Таким образом, можно констатировать, что систематические группы животных имеют свои биохимические особенности. Такие же особенности наблюдаются и у растений для различных систематических групп - наличие специфических белков, жиров, углеводов, алкалоидов, глюкозидов, ферментных систем. [c.189]

    В природе железо находится в связанном виде входит в состав горных пород, природных вод и вод некоторых минеральных источников, содержится в живых организмах. Р астения при недостатке железа не образуют хлорофилла н теряют возможность ассимилировать СО2 из воздуха. У животных и человека железо - действующее начало гемо-глобрша - переносчика кислорода от органов дыхания к тканям соединениями железа являются многие ферменты и белки. В организме взрослого человека содержится 4-5 г железа. [c.191]


    Белки, или протеины, получили свое название от греческогс слова рго1е1оз — первичный, так как эти вещества встречаются во всех формах живой материи. Некоторые белки играют роль опорных структур в живых организмах, другие транспортируют жиры в кровеносной системе, являются гормонами, ферментами, переносчиками кислорода иэ легких в ткани. Так как все белки построены из аминокислот и при гидролизе дают смесь аминокислот, прежде всего будет рассмотрена химия этих структурных звеньев. [c.643]

    Первичная структура синтетич. М. предопределяет (вместе с молекулярно-массовым распределением, т. к. реальные синтетич. полимеры состоят из М. разной длины) способность полимеров кристаллизоваться, быть каучуками, волокнами, стеклами и т. п., проявлять ионо- или электронообменные св-ва, быть хемомех. системами (т.е. обладать способностью перерабатывать хим. энергию в механическую и наоборот). С первичной структурой связана также способность М. к образованию вторичных структур (см ниже). В биополимерах, состоящих из строго идентичных М., этм структуры достигают высокой степени совершенства и специфичности, предопределяя способность, напр., белков быть ферментами, переносчиками кислорода и т.п. [c.636]

    Эти простетические группы также, как и их способы соединения с белками, могут быть очень различными. Так, в фосфопротеидах собственно белок соединен с фосфорной ли пирофосфорной кислотами эфирообразно через гидроксильные группы оксиаминокислот. В хромопротеидах простетической группой является красящее вещество гем, представляющее собою соединение порфиринового ряда, содержащее металл. В гемоглобине (красящем веществе крови), который является переносчиком кислорода у позвоночных, гем содержит железо в гемоцианине, содержащемся в крови и гемолимфе некоторых беспозвоночных животных, гем содержит медь. Железо содержат и ряд других представителей этой обширной и важной группы белков, например, цитохром С — катализатор клеточного дыхания, каталаза и пероксидаза — окислительные ферменты и т. д. Различен также и характер связи простетической группы с белком в хромопротеидах. Согласно современным представлениям, белок (глобин) в гемоглобине связан с гемом водородными связями, возникающими между атомом железа гема и имидазольным кольцом гистидиновых остатков в белке. В цитохроме связующим звеном, по-видимому, является тиоэфирная группа (см. рис. 10). [c.533]

    На возможную биохимическую функцию ванадия указывает наличие ванадоцитов, зеленых кровяных клеток, содержащих 4% У (П1) и 1,5—2 н. Н2804. Эти клетки были обнаружены в оболочниках (морских водоструйных животных, гл. 1, разд. Д,1) . Было высказано предположение, что У-со-держащий белок ванадохром является переносчиком кислорода. Однако полной определенности на этот счет пока нет, и функция этого белка остается неясной. Ванадий накапливается рядом других морских организмов и присутствует в животных тканях в количестве 0,1 части на миллион. [c.372]

    Большая часть медьсодержащих белков реагирует с О2. Иногда эта реакция обратима, как, напрнмер, в случае переносчика кислорода гемоцианина (гл. 10, разд. Б, 4). Однако чаще кислород вступает в химическую реакцию, будучи активированным . Одна группа ферментов параллельно с дегидрированием органических субстратов восстанавливает кислород в Н2О2. Так, галактозооксидаза (из Polyporus) катализирует превращение 6-оксиметильной группы галактозы в альдегидную группу [c.446]

    Некоторые аномальные гемоглобины связаны с заболеванием метгемоглобинемией. Ре 11) в таких гемоглобинах окислено до Ре(1И), в силу чего эти белки уже не могут функционировать как переносчики кислорода. В связи с этим особенную важность представляют мутации, касающиеся Н15-87 а-цепи или Н15-92 р-цепи, являющихся лигандами железа гема. В HЬrwate Н15-87 в а-цепи замещен на Туг, а в НЬнуае Рагк Туг замещает Н15-92 в р-цепи. В обоих случаях фенольный гидроксил тирозина, по-видимому, образует электростатическую связь с Ре +, стабилизируя тем самьш это валентное состояние. [c.560]

    В ряде случаев белки проявляют свою активность при наличии в их составе определенных компонентов, связанных с белковой молекулой. Это можно продемонстрировать на примере уже упоминавшегося тема. Известно большое число комплексов белков с гемом и некоторыми его структурными аналогами, которые объединяются под общим названием гемопротеиды. Центральный атом железа в геме способен образовывать шесть связей. Четыре из них расположены в плоскости гема и соединяют атом железа с четырьмя атомами азота плоской структуры порфиринового кольца, а пятая и шестая находятся перпен.. икулярно по обе стороны плоскости порфиринового цикла и могут давать дополнительные связи с определенными лигандами. Атом железа в геме может менять степень окисления и быть либо в ферроформе Ге , либо в ферриформе и таким образом играть роль переносчика электронов и участвовать в окислительно-восстановительных процессах. Атом кислорода, принимая участие в процессе окисления, может изменить степень окисления железа до Ге (IV) или Ге(У). Если гем связан в комплекс со специфичным белком, это приводит к резкому усилению одной из выполняемых гемом функции. Например, образование комплекса с белком глобином (ге-моглобин) усиливает координирующую способность гема, в особенности способность координировать молекулу О2. Гемоглобин обратимо связывает кислород, который выступает в качестве одного из лигандов, и таким образом служит переносчиком кислорода в многоклеточных организмах. У высших позвоночных гемоглобин находится в специальных красных кровяных клетках (эритроцитах), которые сорбируют кислород в легких и доставляют его ко всем органам и тканям с током крови. [c.16]

    Ряд ионов металлов, в основном четвертого периода периодической системы элементов играет важную роль в качестве кофакторов белков при выполнении ими каталитических и некоторых других функций. Среди них приоритетное место занимает железо. В 1.1 уже говорилось о железопорф1 ринах, которые, связываясь с белками, образуют гелопротег1< ы — комплексы, выполняющие ряд жизненно важных функций. Среди них имеются и ферменты, например уже упоминавшаяся каталаза, и переносчики кислорода (гемоглобин), и переносчики электронов. К числу последних относится цгстохром с — гемопротеид, образованный небольшим белком, который двумя остатками цистеина связан ковалентно с гемом по его винильным радикалам. Цитохром с является участником одного из важнейших процессов в биосфере, свойственного всем аэробным организмам, — переноса электронов от NAD-И к О2. [c.65]

    Белки состоящие из нескольких субъединиц, широко распространены в природе. Уже указывалось, что гемоглобин состоит из че-тырех субъединиц, попарно одинаковых. Субъединицы принято обозначать греческими буквами. У гемоглобина имеется две субъединицы, обозначаемые как а-суб1.единица и две /3-субъединицы. Наличие нескольких субъединиц (см. . 3.1U) приводит к более благоприятной для функционирования гемоглобина как переносчика Кислорода зависимости степени насыщения кислородом от его нарциалыюго давления. Четвертичную структуру гемоглобина обозначают как [c.102]

    Гемоглобин является составной частью красных кровяных тел крови и служит в качестве переносчика кислорода от легких к тканям тела. При кислотной обработке гемоглобин освобождается от белка (глобина), гидролизуясь до простетической группы, называемой гемом , и комплексной соли железа—гемина (IX). Строение гемина как протопорфирина точно установлено его синтезом в 1929 г. [7]. [c.318]


Смотреть страницы где упоминается термин Белки переносчики кислорода: [c.197]    [c.509]    [c.204]    [c.204]    [c.115]    [c.149]    [c.247]    [c.422]    [c.340]    [c.222]    [c.85]    [c.176]   
Методы и достижения бионеорганической химии (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород гем-белками

Переносчик



© 2025 chem21.info Реклама на сайте