Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Длительность послесвечения

    Блок регенерации изображений компенсирует спад интенсивности свечения люминофора. Требуемая частота регенерации зависит от многих факторов, в том числе и от длительности послесвечения люминофора, уровня освещенности в помещении и интенсивности электронного луча. [c.136]

    Исследование состава активного азота в состоянии длительного послесвечения при помощи оптической спектроскопии, спектров ЭПР и других методов показало, что главной составной частью его являются атомы N в основном состоянии S) и электронно-возбужденные метастабильные молекулы No (4 2I), обладающие энергией 6,17 эв. Имеются также указания на присутствие в активном азоте колебательно-возбужденных молекул Nj в основном состоянии, которые образуются в процессе [c.33]


    V.6. ЛЮМИНОФОРЫ ДЛЯ ЭКРАНОВ с ДЛИТЕЛЬНЫМ ПОСЛЕСВЕЧЕНИЕМ [c.121]

    Сравнительная характеристика светотехнических свойств люминофоров с длительным послесвечением [c.94]

Таблица УАЗ Технические характеристики люминофоров для экранов с длительным послесвечением Таблица УАЗ <a href="/info/21363">Технические характеристики</a> люминофоров для экранов с длительным послесвечением
    Так, при освещении неподвижного объекта электронным пучком, отклоняющимся в двух направлениях, возникающие изображения направляются на раздельные места экрана и при длительном послесвечении последнего позволяют получить стереоэффект. [c.134]

    Напряжения 7д и /в, соответствующие концентрациям исходных веществ, снимаются с выходов усилителей 5 и 6. Эти напряжения можно регистрировать вольтметрами, но удобнее подавать их на электронно-лучевой индикатор, в котором используется экран с длительным послесвечением (до нескольких десятков секунд), или на шлейфовый осциллограф, который позволяет регистрировать одновременно много переменных. Если в качестве регистрирующего прибора использовать самописец, то можно сразу получать кинетические кривые. Для наглядности решения задачи полезно обозначить на коммутационной схеме все переменные в символах исходной задачи. [c.341]

    ЛЮМИНОФОРЫ С ДЛИТЕЛЬНЫМ ПОСЛЕСВЕЧЕНИЕМ (типа ФКП) [c.579]

Рис. V.11. Спектральное распределение энергии излучения люминофоров, используемых в двухслойных экранах с длительным послесвечением Рис. V.11. <a href="/info/136484">Спектральное распределение</a> <a href="/info/6186">энергии излучения</a> люминофоров, используемых в двухслойных экранах с длительным послесвечением
    Требования к Л.-яркость и цвет свечения, длительность послесвечения, дисперсность, термостойкость и др.-определяются параметрами устройств, в к-рых их применяют. [c.617]

    По масштабам мирового производства катодолюминофоры занимают второе место после ламповых люминофоров. Наибольшее значение среди них имеют люминофоры, применяемые в кинескопах для черно-белого и цветного телевидения. Кроме того, большое военное (и промышленное) значение имеют люминофоры, предназначенные для радиолокационных установок (люминофоры с длительным послесвечением), и малоинерционные люминофоры для экранов электронно-оптических преобразователей. Некоторые катодолюминофоры используют в измерительной технике — в различного рода электронно-лучевых трубках. [c.106]


    Значительное снижение длительности послесвечения ироисходит при введении в основу сульфидных люминофоров металлов-гасителей люминесценции, в частности никеля. По данным работы 7], у сульфидных люминофоров наблюдаются два типа кривых затухания простые и сложные. Первые подчиняются формуле Беккереля [c.23]

    Некоторые данные по длительности послесвечения важнейших катодолюминофоров приведены в главе V (стр. 123, 125). [c.23]

    Получаемые по этому методу сульфиды всегда содержат значительную примесь (5—10%) элементарной серы и, как показано в работах [28, 29], пригодны для получения люминофоров, к которым не предъявляется особых требований в отношении малой длительности послесвечения. Необходимо отметить также и тиомочевинный метод осаждения ZnS [30, 31]. [c.67]

    Фотолюминофор в экране Р-14 имеет состав ZnS (75) dS (25)- d (0,008) и длительность послесвечения 1 с. Плотность слоя ZnS -Ag составляет 8— Юмг/см , фотолюминофора — 12 мг/см2. Кривые затухания для экранов Р-7 я Р-14 показаны на рис. V-10. [c.122]

    Цинксульфидные люминофоры, активированные Си и Си совместно с Со, прокаленные при 1200°, а также люминофоры на основе сульфидов щелочноземельных металлов обладают способностью при фотовозбуждении запасать большую светосумму и высвечивать ее после прекращения возбуждения. Длительность послесвечения подобных люминофоров оказывается достаточной для практического использования их вместо светосоставов постоянного действия тогда, когда применение последних невозможно или недопустимо. Эти люминофоры наносят на различные сигнальные устройства, шкалы приборов, часов и т. п. Для возбуждения люминофоров используют дневной свет, лампы накаливания, газоразрядные источники света и лампы ультрафиолетового облучения (УФО). [c.92]

    Указанные люминофоры обеспечивают высокую стабильность и надежность работы экранов. Кроме них в последние годы разработаны новые люминофоры для однослойных экранов с длительным послесвечением различного цвета. [c.122]

    Люминофоры сульфидного типа активируют Си, но чаще всего Ag. В последнем случае длительность послесвечения может быть снижена до 10" с (при спаде яркости свечения до 5% от начальной). Сокращение длительности послесвечения достигается введением в основу d или Se. В некоторых сульфидных люминофорах длительность послесвечения снижают путем введения добавки Ni, но так, чтобы при этом не снижалась существенно яркость свечения. Большое практическое применение среди малоинерционных люминофоров имеет окись цинка, дающая широкую спектральную полосу излучения с Хтах — 505 нм и очень короткое послесвечение [5, 68]. [c.124]

    ТП и фосфоресцегщии, в отличие от флуоресценции, часть возбужденных молекул не сразу начинает испускать свет при возвращении из возбужденного состояния в основное, а переходит в метаста-бильноё состояние с несколько меньшей энергией, чем в возбужден-ном состоянии. Такое излучение может иметь большую " длитель-ность, измеряемую секундами и даже минутами, и в отличие от флуоресценции сильно зависит от температуры. Примерами такого рода излучения может служить длительное послесвечение нефтяных фракций при низкой температуре [101—104]. [c.482]

    Помимо природы, вида и условий возбуждения св-ва К. (спектр и энергетич. выход свечения, длительность послесвечения) существенно зависят от технологии их получения, к-рая обычио включает прокаливание аморфной шихты, состоящей из оси. в-ва и активирующих добавок, прн т-рах 900-1200 °С. Для улучшения процесса кристаллизации в шихту иногда добавляют плавни (К.С1, LiF, a lj и др.). В процессе прокаливания происходит частичное замещение иоиов осн. в-ва ионами активирующих примесей. Для эюй же цели применяют ионную имплантацию, электролитич активацию, лазерные распыление и отжиг, др. методы, позволяющие получать К. при значительно более низкой т-ре. В ряде случаев синтез осуществляют в атмосфере инертных газов. Для формирования центров свечения заданной структуры и получения требующихся для практики св-в свечения в К. часто вводят помимо активатора соакти-ваторы и сенсибилизаторы. [c.535]

    ФОТОЛЮМИНЕСЦЕНЦИЯ — люминесценция, возникающая под действием световых квантов. Различают Ф. с коротким послесвечением — флуоресценцию, с длительным послесвечением — фосфоресценцию. Ф. применяется в люминесцентном освещении (лампы дневного света), изготовлении светящихся шкал (кристаллофосфоры), люминесцентном анализе (люминесцентные реактивы), микробиологии и медицине (люминесцентные индикаторы), машиностроении (дефектоскопия), в строительстье (меченые пески) и др. [c.268]

    Более точным и достаточно простым является предложенный Грэмом способ определения времени баланса моста. Он основан на использовании катодного ос -циллографа, трубка которого обладает длительным послесвечением. На вертикальные пластины этого осциллографа подается усиленное напряжение в измерительной диагонали моста. Скорость развертки подбирается таким образом, чтобы электронный луч пробегал горизонтальную шкалу осциллографа, состоящую из ста миллиметровых делений, за 1 или 0,5 с. [c.170]

    Обычно изучают спектры поглощения в равновесных условиях, а спектры испускания — после предварительного возбуждения, на-(фимер монохроматическим светом. После прекращения облучения может наблюдаться кратковременное (до секунд) или длительное послесвечение — флуоресценция и фосфоресценция, соответственно. Это частные виды фотолюминесценции — нетеплового испускания [c.213]


    Для производства фото-, катодо- и электролюминофоров в основном используют сульфиды цинка и кадлшя, а также селенид цинка. Некоторое значение имеют теллуриды цинка и кадмпя, применяемые в небольших количествах для изготовления светодиодов. Сульфиды стронция и кальция пригодны для получения фотолюминофоров с длительным послесвечением. [c.29]

    Люминесценция (от лат. 1ит1п1з — свет) — послесвечение, представляющее собой избыток над тепловым излучением тела при данной температуре и имеющее длительность, значительно превышающую период световых волн (--10 с). Первая часть этого определения предложена Э. Видеманом (1888 г.), вторая часть — признак длительности (послесвечения) — введена С. И. Вавиловым (1945 г.) для того, чтобы отделить люминесценцию от других явлений вторичного свечения — отражения и рассеяния света, а также тормозного излучения Вавилова — Черенкова, индуцированного излучения и др [10]. Начальное возбуждение может быть вызвано облучением (излучением, частицами), деформацией (механическое или электрическое поле), а также химическим и биологическим воздействием. [c.431]

    Как известно, кинетика рекомбинационных процессов связана с наличием, в люминофоре ловушек (см. стр. 73). От числа ловушек, их энергетической глубины и числа электронов, находяпщхся на них, зависит длительность послесвечения. [c.23]

    При комнатной температуре стимуляция может возникнуть у цинксульфид-яых люминофоров с длительным послесвечением, если ИК-лучи действуют на люлшнофор в процессе послесвечения. В этом случае после выключения возбуждения можно при каждом включении ИК лучей наблюдать вспышки люминесценции, интенсивность которых убывает со временем [55]. [c.26]

    Люминофоры на основе цинк-бериллий силиката, активированные Мп, описаны в работах [74—76]. Основу люминофора готовят прокаливанием смеси ZnO и ВеО с SiOg при 1200° при этом образуется твердый раствор силикатов цшка и бериллия. От состава основы зависят спектральный состав излучения (рис. IV.15) и длительность послесвечения. Введение Ве подавляет полосу излучения силиката цинка, активированного Мп, при этом появляется новая полоса с максимумом около 610 нм. [c.88]

    Концентрация активатора (Си) — от 5 -10 до 1-10 2%. Увеличение С1 уменьшает длительность послесвечения. Плавнем служит смесь Mg l и Na l (до 6%). Для повышения длительности послесвечения в светосоставы временного действия вводят - 1-10 % Со. [c.93]

    Энергетический выход малоинерционных катодолюминофоров, синтезированных с применением соединений р. з. э. ниже, чем у сульфидных. Однако их Преимуществом является очень малая длительность послесвечения и высокая стойкость к действию электронного пучка, что особенно характерно для люминофоров AljOg- e, Y2Sia07 Се и YaSiOs- e. [c.118]

    Марка люмино- фора Состав Ориентировочная длительность послесвечения  [c.94]

    Катодолюминофоры на основе соедтений р. з. э. находят в последнее время все более широкое применение. Указанные соединения могут выполнять роль как активаторов, так и основы люминофоров. Соединения р. з. э. — это не только важные материалы для создания катодолюминофоров цветного телевидения [29, 32—42] и препаратов с малой длительностью послесвечения, но и перспективные материалы в плане разработки новых катодолюминофоров, предназначенных, главным образом, для использования в электронно-лучевых трубках, работающих при высоких плотностях электронного возбуждения. [c.117]

    Первым редкоземельным элементом, получившим широкое практическое применение в качестве активатора для катодолюминофоров, был Се. В электрон-IiO-лJ eвыx трубках с бегущим лучом люминофор возбуждается в течение 10-8 с (пли меньше), а частота возбуждения может приближаться к 1000 МГц. Поэтому люминофоры для подобных целей должны обладать высокой эффективностью и исключительно малой терционностью. Именно длительность послесвечения [c.117]

    Преимуп1ество иона как активатора малоинерционных катодолюминофоров состоит в том, что излучение его связано с разрешенными 5 4/ переходами, время жизни возбужденных состояний которых очень мало. Так как затухание послесвечения окисных люминофоров, активированных Се +, экспоненциальное или близкое к нему, обычно длительность послесвечения т определяют При спаде интенсивности свечения в раз (табл. V.10). [c.118]

    Люминофор YV04-EU имеет максимум на кривой спектрального распределения при л= 619 нм (рис. V.8). Преимуществом его является узкая полоса на кривой излучения, что обеспечивает большую чистоту цвета хороший выход люминесценции и повышенная светоотдача (табл. V.11). Стойкость этого люминофора также выше, чем у ZnS- dS-Ag, а спад послесвечения экспоненциальный ст 525 мкс. Длительность послесвечения при спаде яркости до 10% от начальной величины приблизительно равна 800 мкс. Зависимость яркости свечения от плотности возбуждающего тока линейна в широком диапазоне вплоть до 10 мкА/см . К недостаткам люминофора YV04 Eu следует отнести его невысокую энергетическую эффективность, что вынуждает сохранять неравноточный режим работы электронных прожекторов в масочных кинескопах для цветного телевидения. [c.119]

    В радиолокационных и некоторых осциллографических трубках применяют экраны с длительным послесвечением (с памятью ). Выбор люминофоров для таких экранов затруднителен вследствие того, что при катодном возбуждении большинство люминофоров (за исключением фторидных) не имеет длительного послесвечения. Для обеспечения этого качества в большинстве случаев применяют двухслойные экраны (рис. V.9), в которых первый слой возбуждается электронным пучком и дает излучение в синей области спектра. Это излучение возбуждает второй слой люминофора послесвечение которого при фотовозбуждении достаточно продолжительно. Наиболее распространены двухслойные экраны типа Р-7 и Р-14. По данным Леверенца [5], экран Р-7 состоит из слоя люминофора ZnS(86)-GdS(14)  [c.121]

    Фториды цинка, магния, алюминия и двойные фториды этих металлов, имеющие перовскитную структуру, при активации главным образом Мп, а также МЬ и Та [65, 66] являются почти уникальным классом соедхшений, дающим при катодном возбуждении длительное послесвечение, которое затухает по экспоненциальному закону. Цвет и длительность послесвечения определяются составом основы. В частности, показано, что в ряде случаев введение в основу третьего компонента способствует увеличению длительности послесвечения [65]. Фторид-ные люминофоры получают при взаимодействии рассчитанных количеств люмино-форно-чистых окислов или карбонатов с дважды перегнанной НР, Полученную таким образом основу прокаливают при 80Л—1000 (в зависимости от состава) в платиновых или графитовых тиглях в условиях, предотвращающих возможность окисления шихты. Количество активатора составляет - 1%. [c.122]

    Из других фторидных люминофоров следует отметить ZnF2 YFз Mn, который имеет повышенную стойкость по отношению к электронному лучу, и тройной фторид СаРд А1Рз Ь1Р-Мп с длительностью послесвечения порядка —40 с [67]. [c.122]

    Из других малоинерционных люминофоров нужно упомянуть самоактивиро-ванный пирофосфат циркония ZrP207 с излучением в УФ-области спектра и сульфид магния MgS, активированный Sb (0,01%) с излучением в желто-зеленой области спектра (Хщах = 530 нм). Оба эти люминофора имеют длительность послесвечения - Ю бс. Их свечение затухает по экспоненциальному закону. Однако в то время как первый из них отличается удовлетворительной химической стойкостью и стабилен при действии электронного пучка, MgS Sb, несмотря на высокую яркость свечени , мало пригоден для практического использования, так как легко разрушается влагой воздуха и отличается недостаточной стойкостью при катодном возбуждении. [c.124]

    Из малоинерционных люминофоров с оранжевым и красным свечением нужно указать на ZnS-Ag (Xmax = 560—580 нм) и dS-Ag (Xmax = 750 нм) [48], длительность послесвечения которых составляет - l-lO o . [c.127]


Смотреть страницы где упоминается термин Длительность послесвечения: [c.359]    [c.110]    [c.106]    [c.118]    [c.119]    [c.122]    [c.123]    [c.124]   
Неорганические люминофоры (1975) -- [ c.23 , c.117 , c.121 , c.180 ]

Катодолюминесценция (1948) -- [ c.112 , c.186 , c.193 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Послесвечение

Послесвечение длительное



© 2025 chem21.info Реклама на сайте