Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие электронного пучка на полимеры

    Скорость радиационной полимеризации для большого числа процессов пропорциональна корню квадратному из интенсивности [6]. Поэтому использование мощных электронных пучков для реализации многих из этих процессов нерентабельно. Например, исследование радиационной полимеризации акриламида под действием ускоренных электронов [298] показало, что оптимальные характеристики процесса и полученного полимера — близкая к 100%-ной конверсия и молекулярная масса (8—15)- 10 (определяющие его отличную флокулирующую способность) — могут быть достигнуты лишь при мощностях дозы, сравнимой с той, при которой этот полимер синтезируется под действием -излучения. [c.140]


    Браун и Уайт [293] нашли, что образование кристаллических полимеров может происходить в результате радикальной полимеризации бутадиена, акрилонитрила, хлористого винила, винилиденхлорида и циклогексадиена под действием электронного пучка. Основным условием успеха является применение клатратных соединений (соединений включения) указанных мо- [c.42]

    Действие электронного пучка на полимеры [c.235]

    Изменение кристаллической решетки под действием электронного пучка и обусловленные этим экспериментальные трудности, вероятно, служат причиной того, что исследование муаровых эффектов еще не используется для детального анализа структуры полимеров, несмотря на возможность получения ценной информации относительно степени дефектности кристаллов. [c.258]

    Ультрамикроскоп не позволяет судить о форме и размерах коллоидных частиц, так как его разрешающая способность ограничена слишком большой для этого длиной волны видимого света. Для желаемой характеристики коллоидных частиц необходим прибор, работающий с более коротковолновыми лучами. Таким оказался электронный микроскоп, действие которого основано на использовании пучка электронов, получаемых в специальной катодной трубке и разгоняемых электрическим полем. Если длина волны светового луча, используемого в ультрамикроскопе, равна 500 нм, то длина волны электронного луча, используемого в электронном микроскопе, составляет 0,5 нм. В соответствии с этим, разрешающая способность электронного микроскопа в 1000 раз выше, чем у ультрамикроскопа. Это позволило глубоко проникнуть вглубь материи наблюдать отдельные группы молекул, исследовать структуру катализаторов, изучать строение молекул полимеров (например, белковых веществ) и т. д. [c.277]

    После плавления и последующего охлаждения образцов дифракционная картина соответствовала исходной от кристаллического полимера, что указывало на отсутствие необратимых процессов, происходящих под действием пучка электронов. Расчет кривых радиального распределения проводили при помощи электронно-вычислительной машины Минск-2 . [c.157]

    На основании исследования полимеризации этилена при —78° С под действием у-излучения (Со °) был сделан вывод, что она протекает по катионному механизму, так как обычные ингибиторы радикальных реакций (пирогаллол, бензохинон, дифенилпикрилгидразил) не мешают полимеризации [328]. При облучении у-лучами или пучком электронов проведена полимеризация таких циклических мономеров, как триоксан, дике-ген, -пропиолактон и 3,3-бис-(хлорметил)циклобутан и показано, что они легко полимеризуются только в твердом состоянии, причем реакция протекает по нонному механизму [329]. Каучукоподобный полимер ацетона образуется при облучении последнего Y-лучами [330]. [c.74]


    Полимеры претерпевают различные химические превращения под действием излучений высокой энергии, в том числе под воздействием рентгеновских лучей, радиоактивных излучений и пучков электронов. Это следует учитывать при рентгеноструктурном и электронографическом исследовании полимеров (см. гл. 3). [c.48]

    Образец, помещенный рядом с ионным источником, находится на одном конце цилиндрической вакуумной камеры, на другом ее конце расположен приемник ионов — электронный умножитель. Молекулярные группы, выделяющиеся с поверхности полимера, попадая в ионный источник, ионизуются под действием пучка электронов, после чего выталкиваются импульсом ускоряющего напряжения в пространство дрейфа и летят к приемнику ионов. Легкие ионы летят быстрее тяжелых (при одинаковой кинетической энергии), поэтому на выходе умножителя [c.181]

    В настоящее время в СССР радиационная химия полимеров развилась в очень большую область [199]. В условиях ограниченной или практически исключенной подвижности в твердом теле образующиеся под действием излучения радикалы и ионы остаются стабилизированными , замороженными . Изучение замороженных активных частиц позволяет гораздо глубже проникнуть в механизм реакций, протекающих при радиолизе. Особую роль в этих исследованиях сыграла разработка первой в мире установки электронного парамагнитного резонанса под пучком, осуществленная в ИХФ под руководством В. В. Воеводского и Н. Я. Бубена [200]. [c.51]

    Образование кристаллических полимеров, по наблюдениям Брауна и Уайта [209—211], может происходить в результате радикальной нолимеризации бутадиена, акрилонитрила, хлористого винила, випилиденхлорида, циклогексадиена и др. (всего 175 мономеров) под действием электронного пучка или --лучей. Основным условием успеха является применение клат-ратных соединений (соединений включения) указанных мономеров с мо-чевршой или тиомочевиной. После завершения полимеризации мочевину удаляют. ]Молекулы мономеров находятся в определенном положении относительно друг друга, и это приводит к образованию стереорегулярных полимеров. Бутадиен, 2,3-диметилбутадиеи, 2,3-дихлорбутадиен и 1,3-цикло- [c.55]

    При низких мощностях доз обрыв полимеризации, инициируемой излучением, происходит в результате взаимодействия друг с другом растущих цепей. В том случае, когда полимер остается в растворе, скорость полимеризации (т. е. уменьшение концентрации мономера со временем) пропорциональна квадратному корню из мощности дозы. Эта зависимость была найдена для стирола в бензоле, циклогексане, эфире, метаноле [С21] или толуоле [С39, С42], для акриламида в воде [С111, СПЗ, S35] и акрилонитрила в диметилформамиде [В59]. При высокой мощности дозы и малой концентрации мономера концентрация инициирующих радикалов растет и обрыв включает взаимодействие между растущими цепями и инициирующими радикалами. Рекомбинация инициирующих радикалов также может иметь место. Эти явления приводят к тому, что скорость полимеризации становится пропорциональной величине (Мощность дозы) , где x->0 [С39]. Например, при очень высоких мощностях дозы под действием электронного пучка (приблизительно 10 000 рд/сек) [c.111]

    Резистами в электронолитографии могут быть любые полимеры, свойства которых дифференцируются под действием электронного пучка. Из-за высокой энергии электронов полимеры могут не содержать особых хромофорных групп и для технического использования в позитивных слоях должны обладать достаточно узким молекулярно-массовым распределением, которое обеспечивает постоянство свойств во всем объеме рельефа [94]. Негативные резисты более чувствительны, и у них наблюдается больший диапазон чувствительности, чем у позитивных. На примере большого числа полимеров показано, что в ряду негативных резистов чувствительность не является линейной функцией молекулярной массы. Среди негативных — полимеры, содержащие олефины и эпоксисоединения, обладают наибольшей скоростью структурирования. Сенсибилизаторы мало влияют на электроночувствитель-ность вследствие неселективности возбуждающего излучения. [c.134]

    Современные разработки в области электронолитографии преследуют цель не только увеличения уровня интеграции элементов схемы, но и повышения производительности всего процесса в целом. Значительное увеличение выхода годных структур достигается не только использованием резистов с повышенной электроночув-ствительностью и увеличением быстродействия управляюших систем, но и совершенствованием технологии электронолитографии в результате полифункционального использования резистов (см. с. 130). Так, описана селективная диффузия в полупроводниковые пластины непосредственно из рельефа кремнийорганического полимера, содержащего легирующие примеси п- или р-типа [99, 100], заполимеризованного по рисунку действием электронного пучка. [c.135]

    Во время опыта не наблюдалось заметного повышения температуры пленок. Автором были получены спектры поглощения в области длин волн 0,2—0,15 [х и измерены изменения массы пленок и их электропроводности после облучения дозами различной величины. В результате была показана различная устойчивость изученных пленок по отношению к электронному пучку и сделаны выводы об изменении строеш1я пленок при их облучении плотностями заряда различной величины. Сопоставлением изменений, вызываемых в структуре натуральных и синтетических полимеров действием ионизирую-щей радиации от ядерного реактора и электронного пучка, / было показано, что в обоих случаях наблюдаются близкие эффекты [70]. [c.50]


    Нами исследовалась твердофазная радиационная полимери зация акрилонитрила (АН) и винилацетата (ВА) под действием электронов с энергией 1,6 Мэе с калориметрическими измерениями выделения (поглощения) тепла как при размораживании облученных образцов мономеров, так и в ходе самого облучения и наблюдением сигналов ЭПР (под пучком и после окончания облучения). Описание методики очистки мономеров, термо-статирования, дозиметрии и определения выходов полимеров приводится в подробном сообщении [5]. Для определения того, когда именно протекает эффективная реакция полимеризации — в твердой фазе или при размораживании,— был сконструирован и применен диатермический калориметр, принцип которого предложен в работе [6]. Этот калориметр позволил во время размо раживания облученного мономера определять тепловые эффекты (обоих знаков) с точностью 1 кал/г. Измерения тепловых эффектов непосредственно под пучком были проведены на калориметре с более высокой чувствительностью, основанном на том же принципе и описанном в работе [7]. [c.268]

    Радиационная химия изучает химические воздействия ионизирующих излучений на вещество. Излучения, обладающие достаточным для ионизации молекул количеством энергии, отнесенным к одной частице или фотону, — это рентгеновские лучи, улучи, электроны с энергией выше 10 эв и более тяжелые частицы, например протоны больших энергий, дейтероны, а-частицы и т. д. По существу все исследования действия излучений на полимеры проводились с помощью рентгеновских лучей, у-лучей или пучков электронов. Химическое воздействие на полимеры могли бы оказать и нейтроны, но количественных данных об облучении такого рода очень мало, поэтому облучение нейтронами здесь не рассматривается. Рентгеновские и улучи взаимодействуют с веществом исключительно путем влияния на электроны твердого тела. Следовательно, можно предположить, что отнесенное к единице поглощенной энергии действие рентгеновских и у учей, а также электронов высоких энергий должно быть одинаковым. Это и наблюдается в действительности. [c.386]

    Интересно использование ионообменных реакций в фоточувствительных смолах. Вообще говоря, воздействие света вызывает в веществе целый комплекс разнородных по физической природе явлений, но мы здесь отметим лишь один класс фоточувствительных смол фоторезисты со сшитой нерастворимой структурой. Примером может служить коричный эфир и азиды поливинилового спирта. Особо важным представляется эффект деструкции сшитой полимерной структуры под действием света и связанное с этим соответствующее изменение растворимости. В последние годы была разработана технология точной печати на контактных полимерных пленках с использованием высокоэнергетических источников излучения (рентгеновских лучей и электронных пучков). Фото деструкция обычно связана с наличием кетонных структур в основной или боковых цепях полимера. Под действием потока электронов легко разрушаются полимеры с винилиденовыми структурами. При облучении электронами соединений типа 107 происходит разложение с вьщелением в качестве продуктов фрагментов, [c.55]

    В библиографиях, посвященных электронной микроскопии [37, 1571, указаны работы по применению этого метода для анализа полимеров. Наилучшие результаты получены с материалами, из которых можно получить образцы толщиной в несколько сотен ангстрем. Почти все исследованные образцы можно отнести к группам срезов, дисперсий или отпечатков во многих случаях подготовка образцов является серьезной задачей. Далее, во время исследования в вакууме образцы подвергаются действию электронов с энергией 50 кв и более. Шерсть и другие кератиновые вещества исследовали в виде отпечатков или дисперсий химически модифицированных волокон. Целлюлозу, как нативную, так и регенерированную, изучали в виде дисперсий. С волокон хлопка, ацетилцеллюлозы и регенерированной целлюлозы снимали отпечатки, причем в некоторых случаях после химической обработки образцов. Интенсивно изучались дисперсии коллагеновых веществ. Имеются более или менее специфичные красители для электронной микроскопии использование ультрамикротома еще более расширит область применения электронного микроскопа. Чепмен иМентер [31] использовали отражательный электронный микроскоп для изучения формы волокна, структуры его поверхности и его износа. Быстрое разрушение образца, искажение пучка и относительно небольшое разрешение уменьшают преимущества непосредственного исследования образца. Однако вследствие ограниченных возможностей применения для аналитических целей методы электронной микроскопии в настоящем разделе детально не рассматриваются, а читатель отсылается к некоторым книгам [38, 84, 85, 272, 274], посвященным электронной оптике и методам на ее основе. Королевское общество микроскопии посвятило целый номер своего журнала 45] практическому использованию метода электронной микроскопии. Этот сборник может служить полезным руководством по приготовлению образцов. [c.248]

    Мэе [2]. На рис. 4 показано такого рода устройство, дающее электроны с энергиями, распределенными в некоторой области, с максимумом в районе 1 Мэе. Оба этих устройства широко используются при облучении полимеров. Частицы с еще большими энергиями можно получить повторным ускорением потока электронов при прохождении через ряд относительно малых разностей потенциалов такое устройство сравнительно несложно и не связано с решением трудных проблем изоляции. В линейном ускорителе электроны движутся по прямым линиям сквозь ряд электродов, потенциал которых меняет знак при прохождении частиц. В настоящее время промышленностью производятся линейные ускорители с энергией пучка до 24 Мэе. В циклотроне [3] применен тот же основной принцип, но частицы движутся по спиральной траектории под действием сильного магнитного поля и многократно ускоряются при помощи единственной пары электродов, на которую подается переменный потенциал. Полный поток электронов, который можно получить от таких ускорительных устройств, очень велик и соответствует обычно 50— 100 мегафэр/мин (см. стр. 47) это значительно превосходит потоки, которые можно получить от любого радиоактивного источника практически осуществимых размеров. Ускорители обладают тем преимуществом, что весь поток может быть сосредоточен в одном направлении. Поэтому большинство исследований по воздействию электронов большой энергии на полимеры было выполнено при помощи ускорителей, а не с естественным [З-излучением. [c.26]

    В противоречие с ранними исследованиями [185], было установлено, что в присутствии воздуха радиационная деструкция ПММА замедляется [195, 199]. Для объяснения этого факта были высказаны различные предположения, связывающие действие кислорода или с образованием перекисных связей между первоначально образующимися при разрыве главных цепей фрагментами макромолекул [199], или с возникновением — независимо от реакций деструкции — перекисных поперечных связей [195], или с захватом молекулами кислорода электронов с образованием молекулярных ионов 00 и снижением вследствие этого скорости деструктивных процессов, протекающих с участием электронов [200]. Hi)HMepHO аналогичный механизм, связанный с захватом электронов, был предложен для объяснения конкурирующей роли кислорода при облучении ПММА, содержащего различные красители [201]. Наличие в облученном на воздухе ПММА групп, распад которых ускоряется в присутствии следов /прет-бутилкатехина, гидрохинона и диме-тиланилина и которые придают полимеру способность инициировать полимеризацию винильных соединений, в известной мере подтверждает гипотезы, приписывающие основную роль в рассматриваемом явлении наличию перекисей [193, 194, 196, 199]. При соприкосновении с воздухом ПММА, предварительно облученного в вакууме, наблюдается наложение асимм(зтричного спектра электронного парамагнитного резонанса, обусловленного перекисным радикалом, на симметричный спектр ЭПР исходного радикала, состоящий из пяти линий (плюс четыре плеча) [202]. Из спектров ЭПР было найдено, что скорость гибели радикалов, непосредственно образовавшихся под пучком, так же как и вторичных перекисных радикалов, подчиняется кинетическим уравнениям второго порядка. Механизм реакции, по которой перекисные радикалы могут образовать перекисные поперечные связи, предположение о существовании которых было высказано, неясен. Недавно была исследована кинетика снижения молекулярного веса облученного ПММА в период последействия и обсуждены некоторые возможные механизмы этого процесса [203]. [c.102]

    Функции П. в. в порошковых красках выполняют высокомолекулярные полимеры, напр, поливинилбутираль. Нанесенные на твердую поверхность мономеры (стпрол, акрилаты) также могут образовывать пленки под действием облучения мощным пучком электронов (см. Лакокрасочные покрытия). [c.325]

    В последнее время синтезирован ряд новых полимерных фторидов. Например, сополимер тетрафторэтилена с трифторхлорэтиленом [138], сополимер тетрафторэтилена с трифторпитрозометаном [128] (см. стр. 253), отличающиеся повышенной хемостойкостью. Поливинилфторид (полимер R) [—СНг— HF—]х представляет собой новый полимер, обладающий высокой термостойкостью [137] он плавится при температуре выше 200° С и, ълагодаря высокой прочности и сравнительной доступности, найдет, очевидно, широкое применение [138]. Пленка из поливинилфторида, выпускаемая под названием теслар , характеризуется большой устойчивостью к действию кислот, щелочей и растворителей [139]. Она по своей прочности превосходит майлар [137] и может применяться в интервале температур от —100 до +200° С. Диэлектрическая постоянная 7,5. Поливинилфторид более устойчив но сравнению с тефлоном к действию пучка электронов [140]. Пленка из него отличается большой погодоустойчивостью и поэтому особенно пригодна для применения в сельском хозяйстве (для парников), а также в качестве изоляционного материала. [c.191]

    При действии на аморфный и кристаллический ПБ у-пзлучения ( °Со) или пучка электронов с дозами 54—200 Мрад происходит его сшивание. Содержание растворимой фазы в бензоле при 70 °С составляет примерно 17% [106]. При облучении у-лучами при —196 °С и дозе 30 Мрад происходит деструкция полимера [107]. [c.66]


Смотреть страницы где упоминается термин Действие электронного пучка на полимеры: [c.134]    [c.117]    [c.389]    [c.263]    [c.191]    [c.99]    [c.263]    [c.445]   
Смотреть главы в:

Новейшие методы исследования полимеров -> Действие электронного пучка на полимеры




ПОИСК







© 2025 chem21.info Реклама на сайте