Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка и введение газов в прибор

    ОЧИСТКА И ВВЕДЕНИЕ ГАЗОВ В ПРИБОР [c.94]

    Роль аппаратуры в газохроматографическом анализе антиоксидантов. Успехи газохроматографического определения антиоксидантов в резинах зависят от применяемой аппаратуры. Большую роль играет тщательность подготовки прибора к работе. Необходимо точно отрегулировать и установить расход газов, термостати-рование колонок, детектора и испарителя, чувствительность самопишущего потенциометра. Большое внимание следует уделить чистоте применяемых газов, колонок и испарителей. Так как испаритель загрязняется при многократном введении проб вследствие попадания в него крошек от резиновой прокладки, осаждения смолистых и нелетучих веществ, содержащихся в пробах, его необходимо достаточно часто очищать как промывкой растворителями, так и механической очисткой. Загрязнения в испарителе приводят к адсорбции на них части пробы, ее каталитическому разложению, появлению хвостов. [c.73]


    Читателю рекомендуется, после ознакомления с общими проблемами очистки газов, изложенными во введении, изучить далее гл. 2 Методы контроля чистоты газов . Содержащиеся в ней сведения позволяют получить представление о разработанных способах аналитического определения примесей, присутствующих в следовых концентрациях. После гл. 2 можно перейти или к гл. 3, где описаны физические и химические методы разделения и очистки газов, или к гл. 1, в которой рассмотрены приборы и аппаратура, необходимые для выполнения отдельных стадий процессов очистки и разделения газов. Приведен ряд высокоэффективных методик, основанных на многолетнем практическом опыте работы с газами. Специальные проблемы приготовления газовых смесей обсуждены в гл. 4. Поскольку далеко не все газы имеются в продаже в стандартных стальных или стеклянных баллонах, в гл. 5 дан обзор способов получения важнейших газов. [c.7]

    В расчетах принято, что угольные ТЭС оснащены электрофильтрами с эффективностью очистки золы 99 %, а при сжигании угля и природного газа будут соблюдены требования по обеспечению нормативов удельных выбросов 80 , N0 и летучей золы для котельных установок, введенных на ТЭС России с 1 января 2001 г. В настоящее время средняя степень очистки дымовых газов от золы на российских ТЭС составляет 95,5 %, что заметно меньше, чем за рубежом. Дымовые газы на наших ТЭС от оксидов серы и азота не очищаются, пракгически отсутствуют приборы непрерывного контроля над выбросами ТЭС. Использование на ТЭС кузнецкого и канско-ачинского углей [c.542]

    Характеристика работ. Ведение технологического процесса хлорирования — реакции введения хлора в исходное вещество. Подготовка сырья и подача его в аппараты. Регулирование подачи хлора, хлористого водорода и воздуха. Подогрев или охлаждение реакционной массы, хлорирование в присутствии катализатора или инициатора. Выгрузка продукта (слив, передавливание и т. п.), разгонка, нейтрализация, отстаивание, сущка. Передача продукта на последующие технологические стадии производства. Улавливание и очистка отходящих газов. Контроль и регулирование параметров технологического режима, предусмотренных регламентом температуры, давления, вакуума, концентрации хлора в отходящих газах, качества продукта и других по показаниям контрольно-измерительных приборов и результатам анализов. Расчет сырья и выхода готовой продукции. Отбор проб, вьшолнение анализов. Обслуживание хлораторов, реакторов, колонн и печей хлорирования, конденсаторов, нейтрализаторов, сепараторов, скрубберов, отгонных кубов, холодильников, насосов и другого оборудования и коммуникаций. Пуск и остановка оборудования, опрессовка его перед пуском сжатым воздухом или азотом очистка оборудования. Выявление и устранение причин отклонения от норм технологического режима и неисправностей в работе оборудования. Ведение записей в производственном журнале. Руководство аппаратчиками низшей квалификации при их наличии. [c.122]


    Используются как стеклянные, так и металлические масс-спектрометрические анализаторы промышленные приборы обычно изготовляются из металла. Системы введения образца также конструируют из стекла и металла ни один из упомянутых выше материалов не может быть использован для изготовления всех частей такой системы, и наиболее распространенными являются приборы, построенные из обоих этих материалов. Стекло и металл обладают определенными преимуществами и недостатками. При наличии опытного стеклодува аппараты из стекла могут быть быстро сконструированы и собраны. Стекло более применимо для конструкций, подвергаемых непрерывной очистке большинство материалов может быть удалено из стеклянной системы при погружении ее в теплую хромовую кислоту или разбавленную фтористоводородную кислоту с последующей тщательной промывкой в воде. В этих системах имеются шлифы с использованием смазки и воска и разбираемые соединения, герметизированные нитратом серебра для работы при более высокой температуре, однако обычно большинство таких соединений может быть исключено путем спайки отдельных стеклянных частей. Течь в стеклянных системах легко обнаруживается при помощи высокочастотной катушки Тесла, но это преимущество не так важно, так как масс-спектрометр с пробой определенного газа сам собой представляет эффективный течеискатель при условии, что размеры отверстия малы. Для предотвращения чрезмерных напряжений установку и сборку больших стеклянных приборов с применением зажимов следует проводить с особой осторожностью. Даже в аппаратах, проработавших около года, могут появиться трещины, вызванные напряжением или вибрацией. Стекло обезга-живается легче металла, боросиликатные стекла достаточно нагреть до температуры около 400° [210]. [c.145]

    Газ-носитель подводился к хроматографу по короткому специальному шлангу (резиновой трубке, не содержащей жирных кислот). В дальнейшем газ-носитель подводился стеклянной трубкой и полиэтиленовым шлангом. Добавочной очистке газ-носитель не подвергался. Ввод жидкой пробы в колонку прибора со стеклянной колонкой осуществлялся следующим образом. Ток газа-носителя прерывается, и проба вводится в колонку микронинеткой, продутой небольшим количеством воздуха. Затем пипетка удаляется и возобновляется прежний ток аргона. Такой простой способ введения пробы возможен только для детекторов, нечувствительных к изменениям скорости газа-носителя. В комплект прибора входил набор микропипеток калиброванные стеклянные капилляры объемом 0,025 0,05 и 0,1 мпл. [c.85]

    К указанному прибору близок по конструкции хроматограф модели G -10A, выпускаемый фирмой Shimadzu (Япония). Его схема приведена на рис. VIII, 12. Поток введенного в систему таза-носителя делят на 10 частей, каждую из которых подают по колонкам (4) длиной 75 см, внутренним диаметром 16 мм. Проба жидкости (общий объем до 50 мл) подается в систему распределения (2) поршневым насосом и далее поступает в испарители (3) и колонки (4). Полученные фракции автоматически распределяются между шестью охлаждаемыми ловушками, причем небольшая часть элюата проходит через камеру детектора (7). Газ-носитель из ловушек отсасывается циркуляционным насосом (17) и через систему очистки возвращается во входной трубопровод (свежий газ-носитель подается лишь в небольшом количестве для покрытия потерь). В приборе имеется программирующее устройство, которое подает сигналы для автоматического ввода пробы, переключения ловушек и т. д. Предусмотрена также возможность использования одной колонки внутренним диаметром 50 мм. [c.314]

    Д., применяется для разделения газовых и жидких смесей (см, Хро.иатография), осушки и очистки газов (папр., очистки воздуха в противогазах) и жидкостей. А. является первой стадией взаимодействия молекул реагирующей смеси с поверхностью при гетерох ен-иом катализе, играет существенную роль при введении наполнителей в полимеры, загустителей в смазки, при введении смачивателей, при флотации, крашении, модифицировании многих материалов, в полиграфич. и строит, пром-сти. А. пленок активных металлов и окисей влияет на работу выхода в электронных приборах. А. играет большую роль во многих биологич. и почвенных процессах. [c.24]

    Сосуды 7, 8 и 10 заполняют реактивами (немного выше середины) через отверстия, закрываемые пробками. Для увеличения поверхности поглощения газа реактивами передняя часть сосудов заполнена стеклянными трубочками. Каждый сосуд снабжен краном 5 для отключения от крановой части. Фильтр 12 служит для очистки пробы от механических примесей и конденсата водяных паров, для чего нижняя часть его заполнена водой, а в верхнюю, )асширенную часть со стороны входа газа закладывают вату, "руша 13 с всасывающим и нагнетательным клапанами служит для подсоса пробы в прибор. Фпльтр прибора прн помощи резиновой трубки соединяют с металлической или фарфоровой заборной трубкой, введенной в газоход. [c.97]



Смотреть страницы где упоминается термин Очистка и введение газов в прибор: [c.1469]   
Смотреть главы в:

Практикум по органическому синтезу -> Очистка и введение газов в прибор

Практикум по органическому синтезу -> Очистка и введение газов в прибор

Практикум по органическому синтезу Издание 3 -> Очистка и введение газов в прибор

Практикум по органическому синтезу Издание 5 -> Очистка и введение газов в прибор

Практикум по органическому синтезу Издание 2 -> Очистка и введение газов в прибор

Практикум по органическому синтезу Издание 3 -> Очистка и введение газов в прибор




ПОИСК





Смотрите так же термины и статьи:

Приборы для очистки газов



© 2024 chem21.info Реклама на сайте