Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение, физико-химические методы

    Существующие лабораторные методы исследования нефтяных остатков позволяют определять групповой химический состав нефтепродукта. Идентифицировать же индивидуальные углеводороды в нефтяных фракциях очень сложно, а иногда невозможно ввиду их многообразия [2.1]. При разделении и исследовании наиболее тяжелой части нефти возрастает значение физических и физико-химических методов анализа, которые позволяют изучать ее природу и свойства, не вызывая существенных химических изменений в объектах исследования. [c.34]


    Монография состоит из двух частей. В первой части приведены химический состав масляных фракций нефтей и физико-химические методы их разделения п исследования во второй части даны физико-химические основы получения нефтяных масел и возможные пути интенсификации процессов их производства. [c.304]

    Контроль за хроматографическим разделением анализируемых смесей можно осуществлять различными способами. Если разделяемые вещества окрашены, то анализ веществ можно проводить непосредственно (визуально) на колонке в слое адсорбента появляются окрашенные зоны (слои). Если же вещества не-окрашены, но люминесцируют (при освещении их УФ излучением) или вызывают флюоресценцию некоторых индикаторов, вводимых предварительно в адсорбент, то идентификация таких веществ также не представляет особого затруднения. Можно регистрировать разделяемые вещества непосредственно после выхода из колонки. Например, для веществ, обладающих кислыми свойствами, можно использовать цветную реак- цию с индикатором. Иногда проводят анализ каждой порции элюата с помощью различных физико-химических методов (спектрофотометрического, потенциометрического, рефрактометрического и др.). [c.158]

    Описаны теоретические основы физико-химических методов анализа спектроскопических, электрохимических, хроматографических и др. Приведено около ста лабораторных работ по разделению и определению разнообразных веществ. Уделено внимание метрологическим вопросам, обоснованию выбора оптимальных методов анализа. [c.2]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]


    Об определении границ разделения физико-химическими методами. [c.158]

    Удачное решение проблем разделения и анализа сложных смесей всегда оказывало плодотворное влияние на развитие науки и техники. Хроматографический метод — один из наиболее эфс к-тивных физико-химических методов разделения и анализа сложных смесей. Он применим к жидким и парообразным системам. Газовая хроматография, одна из наиболее эффективных разновидностей этого метода, применима практически к любым сколько-нибудь летучим веш,ествам и получила за последние десятилетия наиболее широкое применение для научных исследований и контроля производства в различных отраслях народного хозяйства. [c.7]

    Среди химических, физических и физико-химических методов анализа, используемых для разделения, анализа, исследования свойств индивидуальных химических соединений, видное место занимают хроматографические методы. [c.185]

    Широкое распространение хроматографические методы получили благодаря эффективности, простоте эксперимента, селективности, экспрессности, возможности автоматизации в сочетании с другими физико-химическими методами. Отличительной особенностью хроматографических методов является их универсальность, т. е. возможность использования для разделения и определения твердых, жидких и газообразных неорганических и органических соединений в широком интервале концентраций. Методы особенно ценны тем, что позволяют эффективно проводить разделение соединений с близкими свойствами. [c.185]

    Химические методы разделения и идентификации компонентов нефти и газа в значительной степени /тратили свое значение с развитием хроматографии и других физических и физико-химических методов. Одиако в ряде специфических случаев химические методы остаются необходимым дополнением к полной схеме разделения, в особенности для гетероатомных компонентов нефти и непредельных углеводородов. Разделение основано на различной способности компонентов при реакциях гидрирования и дегидрирования, сульфирования, изомеризации, галогенирования и т. д. [c.80]

    Физико-химические методы установления точки эквивалентности в комплексонометрии. Различные физико-химические методы обычно используют для установления оптимальных условий титрования. Кроме того, с помощью физико-химических методов можно проводить определения элементов, для которых еще не найдены цветные индикаторы, а также определять несколько элементов в одном растворе без предварительного химического разделения. Потенциометрическое титрование комплексоном выполняют с помощью ионоселективных электродов или используют инертные электроды из благородных металлов (Р1, Аи), реаги- [c.244]

    Хроматографией называется физико-химический метод разделения смеси веществ, заключающийся в перемещении смеси потоком подвижной фазы вдоль слоя сорбента (неподвижная фаза). Вследствие различия коэффициентов распределения для отдельных компонентов смеси между подвижной и неподвижной фазами происходит селективное замедление движения компонентов, что приводит при достаточной длине слоя сорбента к образованию зон отдельных компонентов смеси. [c.45]

    Какие физико-химические методы используются для разделения ионов  [c.67]

    Хроматографический метод — один из наиболее эффективных физико-химических методов разделения и анализа сложных смесей. Он применим к жидким, газообразным и парообразным системам. Газовая хроматография, одна из разновидностей этого метода, практически применима к любым сколько-нибудь летучим соединениям. В настоящее время трудно назвать лабораторию, где бы хроматография не применялась для научных исследований и контроля производства в различных отраслях народного хозяйства. Большую роль она играет в автоматизации производственных процессов, особенно в газовой, нефтехимической н химической промышленности. [c.7]

    Основное применение жидкостная адсорбционная хроматография нашла для анализа органических и природных веществ и значительно меньшее для анализа неорганических соединений. Это вызвано, вероятно, тем, что для разделения и анализа неорганических соединений применяются простые химические или физико-химические методы, хорошо освоенные во многих лабораториях трудность же разделения близких по свойствам органических соединений стимулировала поиски и разработки в жидкостной адсорбционной хроматографии. [c.53]

    ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ — совокупность физических и физико-химических методов обработки минерального сырья (руды, угля и др.) для удаления пустой породы и образования концентрата полезного ископаемого, содержание основного компонента в котором намного повышается. Для О. п. и. применяют различные методы гравитационный — разделение по плотности магнитный — разделение по магнитным свойствам флотационный — ос- [c.178]


    Количественное определение ионов после ионообменного разделения проводят различными химическими или физико-химическими методами. [c.225]

    Физико-химические методы разделения смесей не требуют химических реагентов для своего осуществления. При осуществлении же химических методов почти всегда возникает проблема отделения очищаемого вещества от продуктов реакции. [c.31]

    Из физико-химических методов разделения смесей веществ широкое применение как в лабораторной практике, так и в промышленном производстве находят дистилляционные методы. [c.32]

    ИЗ которого наглядно видно, что чем больше а отличается от единицы, тем больше эффект разделения, выражаемый через разницу (у—х) составов равновесных фаз. Поэтому в теории процессов разделения иногда пользуются величиной (а—1), называемой коэффициентом обогаш,ения. Е сли коэффициент обогащения равен нулю, то, как следует из выражения (11.3), разделение смеси не происходит, т. е. состав обеих равновесных фаз будет одинаков. Это имеет место тогда, когда основное вещество образует азеотроп с отделяемой примесью. Как было показано выше, в химических методах очистки коэффициент разделения обычно намного больше единицы. Поэтому понятие о коэффициенте обогащения используется лишь в теории физико-химических методов, в которых величина а часто мало отличается от единицы. [c.34]

    Хроматография. Хроматография — физико-химический метод разделения сложных смесей, при котором компоненты распределяются по разному между двумя фазами. Одна фаза неподвижная с большой поверхностью контакта, другая подвижная в виде патока, фильтрующегося через неподвижный слой. Неподвижная фаза оформляется в виде колонки (рис. 58) или тонкого слоя. Через них протекает подвижная фаза. Разделяемые вещества в начале растворены в подвижной фазе. Они интенсивно взаимодействуют с неподвижной фазой, ассоциируясь с ней, а поэтому только медленно перемещаются в направлении фронта растворителя. Вещества, слабо взаимодействующие с неподвижной фазой, вымываются быстрее. Разделяются вещества в соответствии с их различной скоростью передвижения в колонке или в тонком слое. [c.254]

    ПРОЦЕССЫ ПЕРЕНОСА ВЕЩЕСТВА И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ СМЕСЕЙ [c.322]

    Хроматография относится к физико-химическим методам. Хроматографические методы применяются не только для идентификации, но и для разделения элементов. Знакомство с хроматографическими методами позволит студентам освоить технику разделения и идентификации катионов, основанную на использовании адсорбентов и ионитов. [c.4]

    Хроматографический анализ — это метод разделения жидких или газообразных смесей, основанный на различной сорбции их компонентов определенным сорбентом в динамических условиях. В наиболее простом варианте хроматографический анализ заключается в пропускании анализируемой смеси через колонку, заполненную сорбентом. Если компоненты смеси сорбируются по-разному, то в процессе продвижения по слою сорбента они разделяются и их можно извлечь из колонки в виде отдельных фракций. Таким образом, в отличие от других физико-химических методов анализа, основной задачей хроматографического анализа является разделение близких по химическим свойствам веществ. После разделения компоненты анализируемой смеси могут быть определены любым химическим, физикохимическим или физическим методом. Лишь в отдельных случаях сопоставление результатов разделения смеси неизвестных веществ с результатами, полученными со стандартными смесями известного состава, позволяет непосредственно по хроматографическим данным идентифицировать и количественно определять компоненты анализируемой смеси. [c.5]

    Курсы физико-химических методов анализа включены в учебные планы многих учебных заведений. Однако в многочисленных учебниках и практических руководствах задачам уделено недостаточное внимание. Авторы настоящего учебного пособия задались целью восполнить этот пробел и подобрать задачи по основным методам физико-химического анализа и методам разделения веществ. [c.6]

    ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ [c.216]

    В эту главу включены задачи, охватывающие различные методы физико-химического анализа в сочетании с физико-химическими методами разделения, и несколько задач по кинетическим методам анализа. [c.231]

    Развитие аналитической химии на современном этапе характеризуется широким вовлечением в ее арсенал новых химических, физических и физико-химических методов анализа. Использование различных по своему характеру методов анализа обусловлено чрезвычайным многообразием объектов анализа — сложны по своему составу технических н природных материалов. Эти методы должны обеспечить не только определение различных количеств веществ, но и их эффективное разделение, так как анализируемые объекты в большинстве случаев настолько сложны, что определение в них отдельных элементов или соединений не представляется возможным. [c.3]

    Технически хроматографическое разделение в колоночном варианте хроматографии весьма простое. Раствор образца, содержащий смесь разделяемых компонентов, вводят в колонку определенной длины, плотно заполненной неподвижной фазой (сорбентом), а затем фильтруют его через эту фазу. В процессе прохождения раствора отдельные компоненты смеси отделяются друг от друга вдоль колонки. В выходящем объеме подвижной фазы определяют каким-либо химическим или физико-химическим методом концентрацию каждого компонента. [c.41]

    Тяжелые нефтяные фракции и остатки, являясь весьма специфическими объектами, могут быть подробно и достоверно исследованы только с привлечением современных физико-химических методов анализа, путем комбинирования их с традиционными стандартными методами исследования, использовЯПия разделения сложных многокомпонентных смесей на узкие химические группы и математической обработки получённой информации. [c.43]

    Развитие техники современных физико-химических методов разделения и анализа сложных смессш позволило перейти от определения элементного состава нефтей и выделения отдельных фракций к исследованиям группового, а в последнее время и индивидуального состава нефтяных фракц1Й. Стало возможным изучение индивидуального состава газа и бензиновых фракций (до Сю), проведено групповое разделение и частичная идентификация компонентов керосиновых и газойлевых фракций (до jo)- В высокомолекулярных фракциях (от С21 и выще) пока удалось определить лишь отдельные индивидуальные соэдинения групповое разделение этих фракций, включающих различные гибридные структуры, является также достаточно сложной и не вполне решенной задачей. [c.64]

    В отличие от кислородсодержащих соединений нефти, которые представлены в основном кислотами и фенолами, легко удаляемыми из нефтяных фракций щелочью, удалить сернистые соединения очень сложно. Это связано с тем, что большинство сернистых соединений нейтральны и очень близки по снойствамк ароматическим соединениям нефти. Даже меркаптаны, имеющие слабокислые свойства, по мере увеличения молекулярной массы теряют эти свойства и их выделение из нефтяных фракций с помощью п1елочи становится нецелесообразным. Все существующие в лабораторной и промышленной практике химические и физико-химические методы разделения — такие, как сульфирование, адсорбционная хроматография, экстракция, разделение с помощью комплексообразова-ния и ректификация — оказываются малоэффективными и пока неприемлемы для промышленности. [c.199]

    Наиболее перспективными из физико-химических методов являются обратный осмос, ультрафильтрация, тонкопленочное испарение или электрохимические методы разрушения эмульсионных СОТС, а также совмещение их с реагентными способами [92, 289]. Представляет интерес способ интенсификации технологии мембранного разделения, основанный на магнитоожижении магнитных металлокерамических тел, устанавливаемых в канале трубчатых элементов, что способствует более высокому концентрированию маслопродуктов и повышению производительности ультрафильтрации в 1,1 —1,3 раза. С целью сокращения расхода энергии и увеличения производительности процесса изучена возможность применения цилиндрического вращающегося модуля ультрафильтрации. За рубежом ультрафильтрацию особенно широко используют в автомобильной промышленности. [c.326]

    Применение физических и физико-химических методов разделения и исследования высокомолекулярной части нефти долнсеи основываться на опытном материале о завнсимости ф изических свойств этой части нефти от химического состава и строения основных ее составляющих [1]. [c.25]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Классификация по агрегатному состоянию неподвижной и подвижной фаз получила наибольшее распространение. Этой классификации соответствует и определение хроматографии, данное известным специалистом по газовой хроматографии А. Кейлеман-сом Хроматографией называется физико-химический метод разделения, при котором разделяемые компоненты распределены между двумя фазами, одной из которых является неподвижный слой с большой поверхностью, а другой — поток, фильтрующийся через неподвижный слой . [c.13]

    Выделеиис индивидуальных химических соединений из смесей различного происхождения всегда было и остается одной из основных задач химии. Методы разделения имеют важное значение как в промышленности, так и в лабораторных работах препаративного и аналитического характера. Поэтому постоянио велись и ведутся поиски новых, более современных методов разделения смесей на отдельные компоненты. Одним из наиболее эффективных физико-химических методой разделения и анализа сложных смесей яплиется хроматографический метод. [c.220]

    Хроматография является важным физико-химическим методом разделения на отдельные компоненты самых разнообразных смесей органических и неорганических соединений, очистки веш,еств от примесей II методом концентрирования микропримесей. Поэтому хроматографические методы приобрели большое значение в аналитической химии. [c.194]

    В пособии описаны бессероводородные методы качественного полумикроанализа методы анализа катионов — аммиачно-фосфатный, кислотно-основный, бифталатный, сульфидно-щелочной, тиоацета-мидный, методы анализа анионов и физико-химические методы качественного анализа — полярографический, хроматографический,, спектральный, лкаминесцентный. Приводятся методы разделения и концентрации с помощью осаждения, соосаждения, экстракции, хроматографии и электрохимические. Первое издание вышло в )971 г. Предназначено для студентов нехимических специальностей вузос. [c.295]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]


Смотреть страницы где упоминается термин Разделение, физико-химические методы: [c.328]    [c.17]    [c.36]    [c.3]    [c.343]    [c.305]    [c.397]   
Физико-химические методы анализа Изд4 (1964) -- [ c.524 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.524 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы физико-химические

Разделение химические

Химические и физико-химические методы



© 2025 chem21.info Реклама на сайте